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ABSTRACT

As fiscal constraints demand maximum utilization, engineers must develop more
rigorous methods to predict the life limits of aircraft components. Current Navy policy
requires that aircraft and aircraft parts be retired before they reach 100% FLE. An
investigation has been initiated that would attempt to quantify the probability of failure if
aircraft parts were extended in service life beyond 100% FLE.

The work of this thesis was to investigate the probability distributions of test data

taken for aluminum 7050-T7451, and to attempt to develop a probability based model

from the variation of the 4 fatigue life constants (a}.,g} ,b,c). The goal was to create

strain-life-probability curves that would more accurately describe the likelihood of failure
at a given strain amplitude.

The investigator determined that the test data did not demonstrate any consistent
known probability density function. The investigator cautioned against assuming a
normal distribution before it could be completely established as the predominate
probability density function. Possible consequences of invalid assumptions were
presented. Attempts were made to explain the disparity of sample data between two
different laboratories testing of the same material.

Assuming random behavior within an established range, probability based models
were developed using the 4 strain-life constants. It was determined that in order to create
a complete probability based model, an accurate regression of the test data must fit all
strain levels to include the intermediate strain level’s “knee”. In an attempt to solve that
problem, 8 parameter equations were explored. Methods to predict the 8 parameters
included random number simulation combined with non-linear least squares curve fits,

evolutionary algorithms and genetic algorithms.
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I. INTRODUCTION

A. METAL FATIGUE

The prediction of the useful life of metals has been of interest to man since the
advent of the railroad. @~ How long a metal will withstand the level of applied stress
presents many interesting problems. Of interest to this paper is that there is a wide
variation in how long a given metal will last at a constant level of stress or strain. Simply
put, no two samples, even though manufactured exactly the same will ever have exactly
the same physical constitution. Therefore, their lives will not be the same. Obviously,
the more man is able to control and refine his processes, the less the materials will vary.
Until the day when a process has been created to make each piece exactly the same to
include the orientation of each molecule, there will always be variation to deal with.
Probabilities, statistics, and variational analysis are just a few of the ways people attempt
to explain the unknown. This paper takes a look at how the variation of each metal may

be better quantified and possibly predicted.

B. STRAIN-LIFE

(The following discussion on Strain-Life relies heavily on Fundamentals of Metal

Fatigue Analysis [1].)

For years, engineers and mathematicians have quantified metal fatigue with the
use of sample testing. By testing small coupons of a given material, according to
American Society of Testing Materials (ASTM) methods, engineers predicted the
average life a material would have at a given stress or strain level. The results were
typically depicted in the form of stress—cycles to failure or strain—cycles to failure.
Traditionally, samples were tested with constant amplitude loadings. The heart of this

analysis was the following relationship between stress and strain:

o =FE¢

stress elastic

This equation describes the interaction between stresses applied to a material and

the percent deformation due to those stresses (strain). The two are related by the elastic



properties of the material, the Modulus of Elasticity (E). Upon loading, the material’s
deformation is resisted by the modulus of elasticity. Once the load is no longer applied,
the material “snaps” back to its original size with no permanent deformation. When a
material is never stressed to the point at which it permanently deforms, the material is
said to be undergoing elastic strains. When this type of behavior is applied to alternating
or cyclic stresses, it is describe as High Cycle Fatigue, since the material life-times
associated with non-deforming load levels are much higher than materials subjected to
loadings where there is permanent deformation. High Cycle Fatigue (HCF) is thus
usually tested with constant amplitude load test. When the material does fail, the

determination of the level of strain is a simple transformation:

=0 =)

€ applied -

elastic

During testing, this equation is used to evaluate the strain at failure based on an
established constant amplitude load level. At each failure, the number of cycles to failure
(2Nf) is recorded. (A cycle is counted as, zero stress, to maximum compressive stress, to
maximum tensile stress, and then back to zero load.) After many samples have been
tested at different load levels the failure points are plotted on log-log paper, and
predictions can be made about the life of the material based on a given stress level

applied. The life is determined from the following equation:
Ao :
T = O'f X 2Nfb

Ao .
- = stress amplitude

a} = fatigue strength coefficient

b = fatigue strength exponent
2Nf= cycles to failure

In log space, a lined describes the trend of the data points. The fatigue strength

coefficient is the Y intercept and the fatigue strength exponent is the slope of the line.

During HCF the elastic strain equals the total strain. If materials are subjected to
larger loads, when deformation takes place, it includes two effects, elastic and plastic.

With a large enough load applied, a material will not “snap” back into shape after the



load is released. Instead there will be some amount of permanent deformation. The

relationship between strains is given as:

& & +&

total — “elastic plastic

When permanent deformations occur, the Stress-Life Methods can no longer be
used to analyze the strain at failure. Strain-Life Methods must be used. It was realized

that a similar log-linear transformation could be applied to plastic strain.

Ag ..
plastic ! c
=&, x2Nf

2
Agplastic . . .
—~—— = plastic strain amplitude
g/ = fatigue ductility coefficient
c = fatigue ductility exponent

As with the Stress-life equation, the fatigue ductility coefficient represents the Y

intercept and the fatigue ductility exponent represents the slope of the log-linear line.

If the Stress-life equation is converted to strain amplitude the following equation

1s derived:

A& s O-;‘ b
elastic [ X 2N
2 E /

Since it has been previously determined that total strain is the combination of
elastic and plastic strain, the two previous equations are combined to yield the Strain-life

equation, also known as the Coffin-Manson equation:

A&‘t i U;’ b ' c
— o — L xINf" +¢&,%x2N,
5 z If" +&,x2Nf

Since Strain-life includes the plastic effects, it is usually used when evaluating
Low Cycle Fatigue. LCF, by definition, has a shorter life than HCF. This is due to the
fact that larger loads are applied, plastic effects are introduced and the materials breaks
much more quickly. Strain-life methods usually determine the required coefficients and

exponents from constant amplitude strain tests. Since the strain-life method has wider
3



application, it is the chosen tool for the Navy’s aircraft metal fatigue prediction. When
samples are tested with this method, a variable load is applied that will result in a
constant strain amplitude. Initially, the material exhibits only elastic strain. It is loaded,
it deforms, and then it is unloaded and it snaps back into place. During this stage, while
plastic deformation does not occur, the relationship between stress and strain is linear,
related by the modulus of elasticity. Since the strain is constant, the load to produce that
strain remains constant. At some point, as the material properties begin to break down,
micro-cracks develop, permanent deformation occurs, and the load requirement to cause
the established strain level is reduced. As the material becomes increasingly weakened,
there is a significant decrease in load required to strain the material (load drop). When

the material no longer resists the load, it breaks.

When samples are tested in a strain controlled manner, the resulting plot of the
elastic strains regression line, added to the plastic strains regression line, yields the
equation previously established as the Strain-life or Coffin-Manson equation. The
following is an example of a number of tests with regression lines of the plastic and
elastic strain levels. The sum of these two equations would predict the mean life of this

material for a given constant amplitude strain level.



Aluminum Strain Life
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Figure. 1. Example Strain-Life Plot

In log space, a power law regression to the plastic and elastic points provides the basis for
the Coffin-Manson equation [1].

Ae Oy ® o, © - i
> = 7 (2NF)™ +¢&, (2NF) For this data set the equation becomes:

Agztozaz — 115x (ZNf)(_mS) + 913 (ZNf)(_'mg)

This equation defines a predicted average life at a given strain. Because this method is
based on a regression, the equation does nothing to describe the variation that the
material has. There is a variation of life, which is demonstrated by the scatter of the data
points. The following figure demonstrates the strain-life equation, as it was derived from

the regression of the elastic and plastic parts of this data set.



Aluminum Strain Life
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Figure. 2. Strain-Life Equation

C. PROBABALISTIC METHODS

To compensate for the fact that the strain-life equation only predicts an average
life, engineers typically use a scatter factor to account for the variance that a material may
have. Obviously, an aeronautical engineer would want to design for the worse possible
case. For that matter, a scatter factor of 4 is often used to translate from the design stage
to the actual product. This large scatter factor helps to account for actual material
geometries, manufacturing defects and other uncertainties. This factor attempts to
correlate a coupon test to a full-scale structure. Other less sensitive designs may be able

to use scatter factors as low as 2 or 3.

Since the late 1940s, engineers have examined the test data in an attempt to define
a probability distribution that would explain and characterize the behavior of the data.
Early advances of this type of analysis, were popularized by the famed W. Weibull with
his 1951 paper, “A Statistical Distribution Function of Wide Applicability” [2]. To date
there are many different methods that attempt to predict the probabilities of failure.
Some of the methods include, First/Second Order Reliability Methods (FORM/SORM),

Monte Carlo simulation, and probabilistic finite element. [4]. Many involve the
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intersection of the probability distribution function of failure of a given material with the
probability distribution function of the load levels.

The goal of such probabilistic methods is to develop a more accurate prediction of

fatigue life. This would ultimately increase the range of useable life over the scatter

factor methods with an increased confidence of safety.

Aluminum Strain Life
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N
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Figure. 3. Hypothetical Probabilistic Model
D. PROBLEMS WITH STRAIN-LIFE

In addition to the problem that the actual life at a given strain level cannot be

predicted, with certainty, because of the scatter, there are other difficulties. There exists a
significant problem with the strain-life equation at the transition from LCF to HCF in the

“Intermediate” region. The actual data is not always exactly log-linear and there exists a



“knee”. Additionally, there is often another “knee” in the high cycle elastic strain data.

Figure (4) demonstrates these problems.

Demonstration of Strainlife Equation Inadeguacy

strain

10° 10° 10* 10° 10°
2MF
Figure. 4. Strain-Life Equation Problems

Note that the equation matches the first five levels very well, however, at level
six, there exists an irregularity to the data. The last several high cycle levels also move
away from the line. Most fatigue data does not have a “well behaved” and simple

solution through all mean points. The data points are often piece wise continuous at best.

E. GOALS

The goal of this thesis was to investigate the possibility of predicting the

probabilistic fatigue life of the material by varying the four strain-life fatigue constants

(0'},8}. ,b,c) using Monte Carlo simulation. Genetic Algorithms were also to be

investigated as a means of predicting the fatigue life. The objective was an efficient
method that would use Monte Carlo simulation to make accurate predictions about

fatigue life based on a small amount of test samples. The desire was the ability to take a
8



few parameters of the material properties, possibly from the monotonic (static) data, and
to create a probabilistic strain-life model. A hope was that the simulation or genetic
algorithm methods would somehow be able to correct for the “knee” problem.
If the simulation could produce results that matched the test data, then strain life
probability curves could be produced that would be able to more accurately specify the
fatigue life of a material. A goal would be to be able to use minimal data and still be
able to more safely and accurately predict the safe life region of material at different

strain and ultimately stress levels.

In addition to a simulation model, there was a requirement to determine the best
testing method to properly characterize the probabilistic nature of the material’s fatigue
life. The data used for this thesis was compiled from the NAVAIR structures division.
Their data included an average of 15 data samples over 13 strain levels. NAVAIR testing

methods will be explained in the next chapter.
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II. ANALYSIS OF NAVAIR TEST DATA

A. NAVAIR GOALS

Aging aircraft are of increasing concern in aviation, especially Naval Aviation.
NAVAIR’s safe life methodology is the strain-life approach. Currently aircraft are
retired from service before they reach 100% Fatigue Life Expended (FLE). FLE is
defined as an aircraft having a 1 in 1000 chance of having a .0100 inch crack or larger in
a structural member. As air platforms are increasingly extended in service to due to
operational and fiscal requirements, there is an approaching time when aircraft may be
required to operate beyond 100% FLE. While the FLE does provide a significant safety
factor (1 in 1000 chance), an important question is, with what certainty can safe life be
predicted beyond 100% FLE? In order to be able to address this question with
confidence, the structures division of NAVAIR has undertaken the task of developing a
probability-based strain life model. [3] (NOTE: A 1 in 1000 chance means a probability
of .001. This also happens to correspond to the probability at -3 sigma on a standard

normal probability curve.)

B. NAVAIR DATA

In order to develop the required database for a probability based strain-life model,
an experimental strain-life test program was initiated by NAVAIR. The tests consisted of
hourglass and uniform gage section test specimens. All specimens were cut from the
same piece of sheet metal. The testing was accomplished in accordance with ASTM
E606 for low cycle fatigue, and E466 for high cycle fatigue.  Cycle times were
investigated at 2%, 5%, 10% 15%, 20%, and rupture. NAVAIR selected the 10% load
drop level to correspond to a .01 inch crack. This assumption was based on what other
testing agencies have done in the past. It is not reflective of what the actual size of
micro-cracks exist at 10% load drop. To date, there has not been a thorough analysis of

this variable.

The investigator of this thesis took a slightly different approach. He considered
that the “intent” of the NAVAIR definition of a 1 in 1000 chance of a .01 inch crack
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really meant that a crack existed that would cause failure. The following chart
demonstrates that at a 2% load drop, there must exist a crack of unknown size that is
rapidly leading to metal failure. In theory, without a crack, fatigue life is infinite.
Therefore, a 2% load drop demonstrates that there is a crack and the material is going to
break shortly. In the following chart, each line represents a sample’s fatigue life as a
function of its load drop during the crack initiation and failure process. The X axis is the
% load drop, so as the load drop goes from 0 to 1 (100%load drop), the life time of the
material is plotted on the Y axis. As an example, in the top cluster of samples, when the
load first begins to drop (2%), there has been approximately 8000 cycles. As the load
required to strain the material drops even further to 5%, the material has lasted about
9500 cycles. When the load finally drops by 100% and the coupon breaks in two, it has
lasted approximately 10,000 cycles.

Load Drop Analysis
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Figure. 5. Load Drop Analysis of Aluminum 7050-T7451
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It can readily be seen from figure (5) that at a 2% load drop, there must exist a
crack, and the material is quickly headed to failure. At 10% there also certainly exist a
crack. The problem with using 10% is that from 10% to 100% (failure), there is little
fatigue life left. The life at 10% is almost the same as life at failure. Therefore, the
author assumed, that 10% essentially defined failure. If the intent of the NAVAIR

definition actually was meant to serve as an indicator of a 1 in 1000 chance of failure,

then clearly, 10% would be a satisfactory pick. However, if the intent is that just a crack
exists, then 2% should be used. In order to quantify failure as a .01 inch crack, the author
selected the cycle count at a 2% load drop to define the end of useful life. For more

information about this aspect of the test sequence see ref [3].

C. EXTRACTION OF NAVAIR DATA

The NAVAIR investigation team, tested AL 7050-T7451 in accordance with
reference [3] . The NAVAIR data was a compilation of samples tested in their own
laboratories and samples tested under contract by METCUT laboratories. It was
determined during the course of their testing that the grain orientation of the samples
could produce significant testing errors. For this reason, the majority of the samples
tested by the NAVAIR laboratories were rejected since they were not grain controlled.
The testing error was realized before the testing by METCUT laboratories. Therefore,
the majority of the samples investigated in this thesis were actually tested by the
METCUT laboratory. The interested (or not) reader can learn more about the grain

control error from reference [3].

The results of all samples (METCUT and NAVAIR, Grain controlled and
uncontrolled, Uniform and Hourglass) were recorded to a Microsoft Access database.
This information was provided to the Naval Post Graduate School. The investigator then
queried the material for grain-controlled, 2% load drop data and arranged the data for
Microsoft Excel. The following strain levels were selected for analysis: METCUT - .04
(16 data points), .03(15 data points),.02(16 data points),.015(16 data points),.012(16 data
points),.010(05 data points),.008(5 data points),.007(15 data points),.006(15 data points);
NAVAIR - .005(15 data points), .004(15 data points), .003(15 data points), .025(10 data
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points)

, .022(1 data point), .002(5 data points). The 2% grain-controlled LCF METCUT

data and the HCF NAVAIR data is provided in Appendix A.

The following chart presents the test data from Appendix A, which was also used

to analyze the probability distributions and to create the strain-life probability models.

Al 7050-T7451 Strain-Life METCUT LCF-NAVAIR HCF 2%load drop
o1 ¢ Max_Strain
Elastic
X Plastic
4 NAVAIR HCF load control
— Power (Plastic)
— Power (Elastic)
«w»  Elastic = 0.011x%%68 — Power (NAVAIR HCF load control)
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/0 o
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c
b m\
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X
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1000 10000 100000 1000000 10000000

100

Figure. 6. Strain-Life Plot

Since only 5 data points exist for the NAVAIR data, only the METCUT data was

used for a power-law regression of the elastic and plastic data points. The coefficients

and the exponents provide the solution to the standard Coffin-Manson Strain-Life

Ae =011x (2Nf)(—.068) +1.2418x (2Nf)(—.7337)

Equation.
Since the regression line of the NAVAIR HCF data demonstrates a different slope
and intercept than the METCUT elastic regression line, the parameters of the NAVAIR

HCEF regression line were used as an adjustment for different models proposed by this

paper.
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D. AL 7050-T7451 STATISTICAL ANALYSIS

Most natural phenomenon can be best described by a normal type distribution
according to the Central Limit Theorem. This is generally accepted to be the case with
fatigue data, though sometimes it is more accurately characterized by the lognormal or
Weibull distribution. Initially, in the development of the probabilistic model proposed, a
normal distribution of the experimental data was assumed. This followed the
assumptions of the NAVAIR probabilistic model [3]. Evaluating the data with normal
probability plots, the results look reasonably normal since the data points appear to be

described by a straight line.
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Figure. 7. METCUT Data Normal Probability Plots
Upon a closer analysis, the aluminum test data was not found to correlate well to a
normal distribution. Visually, several strain levels appear to be moving toward a normal
distribution. However, each strain level seems to exhibit a different form of behavior. A

very distinctive normal behavior is not seen.
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Figure. 8. Test Data Frequency Plot with Superimposed Normal PDF

A visual inspection of the frequency plots of the data points paints the most

accurate picture of what the data represents. However, in the interest of accuracy,
Crystalball® software was used to investigate the best fit of the data. Crystalball® was
used to evaluate the test data with the Chi squared test, the Anderson- Darling Test and
the Kolmogorov-Smirnov Test in order to evaluate the best fit to 11 standard distributions

(Normal, Lognormal, Weibull, Uniform, Logistic, Extreme Value, Pareto, Gamma, Beta,
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Exponential, and Triangular). The Kolmogorov-Smirnov Test was chosen since there
were too few points for a Chi-squared evaluation and the Anderson-Darling is for use
when there is concern at the “tails” of the distribution. The following best fits were
found with the 2% Load Drop, Grain-controlled METCUT data and the NAVAIR HCF
Grain-controlled data:

Table 1. Al 7050-T7451 Test Data Distribution Best Fits

Strain Level Best Fit Probability Density Funtion Kolmogorov-Smirnov coeff
.004 Extreme Value 1359

.005 Triangular .0838

.006 Weibull .0933

.007 Logistic .1845

.012 Logistic 113

.015 Beta .1066

.02 Beta .1066

.03 Normal 1776

.04 Gamma .1416

The statistical analysis demonstrates that the data points lack the measures of
standard normal distribution and there is no real trend between various strain levels.
Additionally, the Kolmogorov-Smirnov correlation coefficient should typically be less
than .03 in order to identify a good fit. No such “good fit” was found with the present
test data. Altrnatively, the data could be described by a random distribution with a “few
more” data points scattered about the middle of the distribution. It should also be noted
that the investigator conducted similar investigations of the 5% and 10% load drop data
and found the characteristics of the probability distribution to be just as varied as the 2%

data set.

A heuristic estimate can be made for the number of samples that will be required
to demonstrate a normal distribution. Assuming that the final profile of an infinite group
of samples does demonstrate a normal distribution, then a visual inspection of figure (8)

reveals that in all cases presented, there are several data points lacking in the 2 to 3 sigma
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area of an imagined normal curve. The MATLAB simulated normal curve (in red) helps
with this visualization. In order to develop a normal curve about the apparent mean point
of the data in each set, there must exist approximately 4 more data points in the region
between 2 and 3 standard deviations. The probability of obtaining points within this
region is 15.87%. Since, (25 X .1587 = 4), 25 more data points are required by testing to
validate a normal distribution and populate the region of deficiency. The following

figure visually describes the estimate.
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Figure. 9. Estimate Method for Number of Samples Required for Normal Distribution
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E. AN ATTEMPT TO DEMONSTRATE A NORMAL TREND

A method has been presented to represent the test data in a way to
understand the possible trends and behavior of the distribution. In an attempt to gain
some indication of the type of trend to the data, the test points were all normalized
between 0 and 1 at each strain level. The reason for taking such measures was to
compensate for the lack of data points at the given strain levels. With this approach all
test points could be plotted together. Normalization was accomplished in the following
manner. Step 1: Subtract all data points in a given level by the smallest 2Nf value. This
moved each range to the zero axis. Step 2: The same points (having been subtracted)
were again divided by the largest new 2Nf value of the new range. This had the effect of
making all the data points within a given level plot lie between 0 and 1. Thus all strain
level data points were put on the same “ playing field”. The following chart presents
this normalized data with the normalized 2Nf on the X axis, and the frequency (number

within a set range) on the Y axis.

Normalized METCUT with NAVAIR
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Figure. 10. Normalized Histogram
When all the data points are considered together in this normalized fashion, the
data seems to portray a normal type distribution. Based on these findings, the

investigator felt more confident assuming a normal distribution of data may ultimately
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exist. However, making the correct correlation back into each range of 2Nf-strain level
would be too hypothetical. It appears from figure (9), that the mean lies at about 50% of
the maximum range and the standard deviation is at about 70% of the maximum range.
When these correlations were later made in some Monte Carlo models, the results did not
match the experimental data. That may be because of there was not enough data

demonstrating the spread of the entire normalized sample set.

F. ATTEMPTS TO EXPLAIN THE DISTRIBUTION OF THE DATA AND
THE BIGGER PROBLEM

With 15 data points at each strain level, it is puzzling that the data did not follow
the standard normal distribution or a lognormal or Weibull distribution. It is often
assumed that the fatigue data follows one of the standard distributions. However, a
careful analysis must be completed of each material to determine the proper distribution
before a probabilistic reliability method can be generated. Charles Annis of the
American Society of Mechanical Engineers explains that “Computing a mean and
standard deviation doesn’t make a distribution normal (or even random). Actual behavior

can be quite different from idealized behavior suggested by normal assumptions” [4]

The fact that the fatigue specimens were all cut from the same sheet of aluminum
may be another clue. In order to illustrate this notion, the following experiment is
presented. Let it be assumed that there are 3 things that could contribute to metal fatigue,
micro cracks, grain alignment and test method. (Certainly there are a lot more factors
than that, but this analysis is meant to present an idea.) Assume that the factors decrease
the life accordingly. A 1 would mean that the material was essentially perfect in this
category and that there was no loss of life due to this factor. A 5 would mean that the life
would be limited by some factor, which would result in an average lifetime at a given
strain. A 10 would mean that the factor was exceedingly bad and that the sample would

have the shortest life. Using Crystal Ball® software, a Monte Carlo simulation was run.

(Monte Carlo simulation is the method in which random number generators are
given parameters that match the distribution of the phenomenon of interest. The
randomly picked random numbers are then mapped into the range specified by the

distribution of the test sample set. Since the simulations are often run on computers, this
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Monte Carlo simulation can predict the outcome of thousands of “events” or data points.
This allows an investigator to make inferences about a very large population of samples
vice the small set of test points that actually exist. This method is only as good as the

degree to which the actual probability of the tests is predicted with accuracy.) [5].

One set of samples were established to have very high quality and very little
variance. Random number generation picked numbers between 1 and 3 for each failure
criteria. At each iteration, the result of the 3 numbers random generation was added to
predicted the total fatigue damage inherent in that random sample. The simulation was
run 1000 times, simulating 1000 random samples. Another sample set was made from
weaker stock and had factors ranging from 1 to 9. Random number generation in this
range would indicate that a few samples had very good characteristics, but there was also
a wide range of samples, some of which have very poor characteristics (9s) . The
following is a plot of the simulation. Since the Nearly perfect sample (blue) had 3 factors
influencing fatigue, but those factors did not affect life significantly, there is a tight group
of the probability distribution at about 7. In this simulation, that would mean that , on
average, the blue samples had a summation of negative influences that would reduce life
by a factor of 7. In contrast, the imperfect samples (red) had wide variance and a mean

life reduction factor of 11.

Overlay Chart

Frequency Comparison

176

REyan—— i 1 B Nearly Perfect Sample Set
£
]
o
=)
o B imperfect Material with Great Variation

.000-

3 7 11 16 20
Figure. 11. Probability Distribution Explanations
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It can be seen that independently, both simulations follow a normal distribution.
However, when grouped together, they appear to follow a different distribution, possibly
lognormal. Certainly, this simulation is a simplistic way to view the different
distributions that often describe fatigue behavior. The purpose of this simulation was to
propose the following question. When testing is completed, what do the results really
show? Did the test group define the real characteristics of the entire population of the
material or are “hidden” distributions resulting from material or testing variations

skewing the results.

Another simulation was investigated which was more suggestive of the NAVAIR
data. The Rusk and Hoffman paper, reference [3], describes the investigation of grain
orientation in relation to the simulation. It was reported that there was a more favorable
grain orientation. However, the grain orientation was not controlled during the initial
experiments so that grain orientations were random during the testing process. The short
transverse(S-T) specimens are modeled in a similar simulation, as was previously
described, by the best life factors (1-4) and the long transverse specimens (L-T) are
represented by the worst life factors (4-9). (An important note is that the grain
orientation errors were not a result of unfavorable material characteristics, but were the
result of testing errors generated from improper strain gage placement to the grains.)
Never the less, the idea previously presented holds. If another simulation was run,
comparing 1000 simulated best grain samples to 1000 simulated worst grain samples, two
separate distribution would be produced. The following figure demonstrates this

simulation.
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Figure. 12. Grain Orientation Simulation
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Since the best grain orientation samples had better life reduction factors, the
average reduction factor could be described as a 7. The worst grain orientation samples
would be described as having a mean of 13. Both distributions demonstrate the normal
trend. However, what would be the distribution of these same samples if they had not
been sorted. The investigators would be left to figure out a way to fit some strange
double-peaked distribution data. The investigator would be left wondering why his test
data did behave according to the central limit theorem. Figure (12) demonstrates the
same pattern that was found in Figure (11) with the actual test data. If the grain-
controlling error had not been realized during testing, what type of distribution would
have been defined for the material? What this simulation and investigation was meant to
demonstrate was that the degree of material quality control significantly impacts the

distribution of the sample. This, of course, comes as no surprise.
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Figure. 13. Grain Control vs. Not Controlled Ref [3]

In an attempt to predict the fatigue-life characteristics of AL 7050 with the
highest degree of accuracy, the NAVAIR test was very well devised to eliminate
variability. There is another problem that presents itself. The tests were conducted by
two, independent testing facilities, NAVAIR laboratories and METCUT laboratories.
Even though the samples were all cut from the exact same sheet of metal with the same

grain orientations, there still developed a large error between the data samples.
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Figure. 14. Testing Laboratories Comparisons

It can be seen that the NAVAIR average life times are significantly shorter than
the METCUT life times.  This can be visualized with the following figures that
demonstrate the probability characteristics of a combined set of data (NAVAIR and

METCUT 2% load drop samples).
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Figure. 15. Combined Distribution Histograms

Figure (15) depicts the weak normal distribution of the METCUT data combined
with the few data points from the NAVAIR data, which essentially creates a “tail”. The
NAVAIR data obviously distorts the probability characteristics of the METCUT data.
Does that mean that the NAVAIR data should be disregarded since there is only a few
samples and they do not appear to fit in with the METCUT data? Suppose that an
assumption is made that the NAVAIR data is erroneous, and it is not used in the
probability-based model. The METCUT data is used exclusively, and later testing
confirms a distinctive normal distribution about the current mean. With the distinctively
defined METCUT data, probabilistic models can be developed that will accurately
predict the strain life of the METCUT tests. That information is then transferred to the
engineers assessing the life of the Navy/Marine Corps’s aircraft. Since the distribution of
the METCUT data is so well defined, the probability models infer clearly where the third
standard deviation from mean lies with respect to a given strain level. Therefore a 100%

FLE (Fleet Life Expended) would be re-defined and the engineers would be able to
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predict with the highest statistical certainty the probability of a .01 inch crack if the
aircraft was retired beyond 100% FLE.

NOW SUPPOSE THAT THE METCUT DATA WAS ERRONEOUS and the
NAVAIR data was accurate. The probabilistic model based on MATCUT would not b e
accurate and the Navy/ Marine Corps would put a few more in the water. This all seems
logical but what does it mean to the development of a probabilistic model?

In order to safely predict the probability density function of the fatigue life of a
material it is essential to consider all possible variables that will effect the nature of the
fatigue life probability. With the present test, all samples were cut from the same piece
of material while specially controlling the grain direction. The investigator does not
intend to propose that sample testing should not be highly controlled. However, a few
questions arise with the correlation of highly controlled test coupons to real world aircraft
components. If component life is based on a direct correlation of the probabilistic model
of the coupon samples, then the investigator has serious misgivings. The investigator
believes that highly controlled experiments are a requirement, but that purposeful
variation of material should be introduced into the investigative process. This would help
to quantify the real world variations that occur between components due to different
manufacturers, different material batches and different standards, just to name a few
potential variables. To account for such problems and variations, engineers have
traditionally relied on Safety Factors and Scatter Factors. Does that mean that engineers
should throw in the towel and stick to their older simpler methods? Maybe in some
cases, but the ability to develop better models is only a function of desire and
investigation. After all, the only reason probabilities are used in engineering is to attempt
to quantify what which cannot be explained deterministically. In order to develop a
model accurate enough to extend the lives of aircraft beyond the original engineering best
guesses, a very comprehensive investigation of metal fatigue will need to be completed,
building on and going beyond what has been done in the past.

The first step would be to establish a very controlled probabilistic base line of the
most ideal of all specimens. This is essentially what NAVAIR has already implemented.
The second step would be to carefully evaluate those variables that could affect the life of

the material, and would be evident in the population of real world components. Some
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examples would be to determine the probability distribution from the same metal
specimen, but measured at a different company. Another would be to test samples that
all had the weakest grain direction. After all these different distributions have been
determined, the investigators would be able to compare how different variable affected
the life and make reasonable assumptions about the probability distribution of the entire
population. This would give the engineer much more confidence in his material
properties database. The development of the probabilistic model should very carefully
control each of the different variables that could possibly effect the fatigue life of the
metal parts used in Navy/Marine Corps aircraft and then quantify what each variable does
to the probabilities of the whole sample space of all possibilities of aircraft parts.

As an example, let it be assumed that a particular type of aluminum was used in
90% of all helicopter drive trains and thus it was of interest to develop a better
probabilistic model in order to extend the service life of these components.  Samples
should first be drawn in a highly controlled grain oriented manner. The probabilities of
the distribution of these nearly perfect samples should be evaluated. Unless it is known
that all drive trains are manufactured such that the component grains are oriented in the
most favorable manner, there should be samples tested that purposefully have the poorest
grain orientation. Then the two probabilities should be evaluated together. In that
manner, the developing engineer would gain some understanding about the value of grain
orientation. In the same manner more grain-controlled samples should be cut from
another manufacture’s product. Then these distributions should be compared against the
former, also measuring the degree of error introduced by different companies. This type
of testing should be conducted until all known life-changing possibilities have been
examined and related. Here is a very simplistic example, obviously, reality is several
orders of magnitude more complicated! The figure depicts the simulated distributions of
4 simulated sets of test data. Company A’s specimens are depicted in shades of red, and

Company B’s in shades of green.
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Figure. 16. Example Testing Distributions

What could does this tell the investigator? Company A makes a better product,
though, with greater variance than company B. Poor grain orientation reduces life by
about 7%, which is noted by the percent difference between the mean of good grains and
bad grains of each material. If only these two companies make the parts in question and
grain orientation is the only negative factor effecting fatigue life, then a fairly safe
prediction could be made that the fatigue life of coupons (at this strain level) would be
between about 1120 and 1580. The distribution may be difficult to characterize. A
uniform distribution would be the safest bet in this case. If company C began to make the
parts in question, this model would no longer hold and more testing would be required,
since company C’s parts have not been plotted and there is no way of knowing where
they would fall. Unless “Management” is willing to pay for, at least this level of testing,
no probability model will ever be able to safely provide a probability prediction beyond

100% FLE.
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III. HYPOTHESIS

Since practicality dictates that only a small amount of testing can be conducted

for a given material, the Monte Carlo simulation of the four strain-life constants

(o, g}, b, c) should provide a matching data set of strain-life data points

corresponding to hundreds of thousands tests. A measurement of the statistics of the
simulation could be made and inferred to the actual material, thus completing the
Probabilistic Strain-Life Model. The following is an illustration of Monte Carlo
Simulation to model this material. (Note this is drawn from an early stage program

“thesisdata4”.)
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Figure. 17. Hypothetical Monte Carlo Simulation
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A resulting probability distribution derived from the simulation is given in the

following figure:

Simulated Distribution at .01 Strain Level
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Figure. 18. Probability Profile from Monte Carlo Simulation

30




IV. SIMULATION METHODS

A. OVERVIEW

IF a distribution can be defined and related to the material’s fatigue properties,
then a Monte Carlo simulation model can be developed that will describe the solution to
the variable strain-life problem at all levels, not just those defined by testing. ~Sufficient
testing must be completed to correctly identify the distribution pattern of the material.
Additionally, the test data must provide some sort of “anchor” on which to vary the
model. This anchor could be the mean line of all data points or it could be the minimum
or maximum. Somehow, a key parameter of the data must be defined to restrict the range

of perturbation.

These models were developed with the assumption that variation would be about
the Coffin-Manson strain-life equation, which is the best known fit to the mean line of the
test data points. Additionally, a normal distribution was initially assumed to define the
characteristics of variation. Many of the models were developed before the completion
of all the sample testing. Therefore, the evaluator used the historical assumption of the
strain-life equation and a normal distribution. After new test data was presented that
obviously did not demonstrate a normal distribution, the investigator modified the
simulations to reflect a uniform distribution. As has been previously stated, there could
be problems with an assumption of the probability characteristics of a particular metal.
However, the methods developed for simulation could provide insight and a baseline for

the future development of strain-life models once the material is accurately measured.

B. MULTIPLE SOLUTION METHOD OF MONTE CARLO SIMULATION

The difficulty with the determination of life with the strain-life equation is that the
best-fit function is highly non-linear and therefore requires a solver to determine the life
(2Nf) given a particular strain of interest. In order to run a Monte Carlo simulation in
this manner, the 4 strain-life parameters were randomly varied a determined number of
times. At a given strain level, simulation created a large number of sets containing

random combinations of the constants. These random sets were then used to solve the
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strain-life equation for life(2Nf). The resulting output was a variation of life at a given
strain level which was the result of randomly varying constants. The sequence was then
repeated for each desired strain level. For this paper, algorithms will be used to more

distinctively describe the method.

MULTIPLE STRAIN LEVEL SOLUTION MONTE CARLO ALGORITHM

I. Establish number of simulations at each strain level (n).

2. Determine strain levels to evaluate.

3. Select the first strain level.

4. Generate (n) sets of 4 constants varied randomly (distribution dependant).
5. Use a numerical solver to solve the strain-life equation (n)-times for 2Nf.
6. Group the life values at that strain level.

7. Return to step 3 and compute new strain level until complete.

8. Determine the probability density function of life at each strain level

0. Determine probability parameters of interest (ex. Mean, 2sigma, 3sigma)
10. Connect the parameters of interest at each strain level

1. Plot

C. 2NF SEEDING SOLUTION METHOD OF MONTE CARLO

Since the previous method required the non-linear numerical solution of the life
for each strain-constant set combination, computation time was significant. Large
simulations often took several hours. For this reason, a simpler, quicker method was
developed. Instead of solving the equation many times for life, a very large number of
random, uniformly distributed, 2Nf data points were generated across the range of
interest. Each 2Nf was matched with a sample set of the 4 randomly varied constants.
Thus a strain level was directly computed from the equation. After all these strain levels

were found, they were grouped into small ranges corresponding to a strain level. Once
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that was complete, distributions were obtained as before. This method was significantly

faster.

2NF SEEDING MONTE CARLO SOLUTION ALGORITHM

l.

2.

Establish number of (n) random data points.

Generate (n) uniformly distributed random life points with in the desired

range.

Generate the same number of random sample sets of the 4 constants for

use with each life point.
Calculate the strain at each life data point.

Sort the data pairs into small strain intervals. (ie all between .015 and .025

would be called as .02 strain)

Evaluate the probability distributions of each strain interval

Determine probability parameters of interest (ex. Mean, 2sigma, 3 sigma)
Connect the parameters of interest at each strain level

Plot
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V. CORRELATION METHODS

A. OVERVIEW

After creating models that would compute Monte Carlo simulations of input
parameters, there was a requirement to input the correct parameters that would model the
characteristics of the material properly. During the model-building phase of this thesis, a
normal distribution was assumed to model the fatigue life characteristics.  Standard

deviations of the life cycles at each level were established to be 10% of the mean at each

level. Thus, the 4 strain-life constants (o ,8} ,b,c) were set to vary about their mean

with a 10% standard deviation. This approximate method provided the initial basis for
the Monte Carlo simulation. As the process was refined, many more correlation methods

were developed and will be discussed in later sections.

B. 2NF VARIATION EQUALS PARAMETER VARIATION CORRELATION

As has been described, the variation of the 4 strain-life constants with the same
probability distribution type was the simplest method of correlation for a Monte Carlo
simulation. Other, similar, probabilistic attempts validated the possibility of this method.
The investigator found a paper prepared for the Virginia Transportation Research
Council, [6] which computed the probabilistic fatigue life of bridges in a very similar
manner. The bridge investigators modeled the damage stress function(h[B(w)])
parameters (0, m) with the same distribution parameters as the damage stress function.
[Note: This paper was extremely important to the investigator of this thesis since his

father drove over the bridge in question on his way to work.]

What type of distribution to use became difficult to determine since the actual
experimental data did not demonstrate any clear profile. Since the test data did not
demonstrate a solid normal distribution, the constants were varied with a uniform
distribution. The range of the constants was of the same ratio as the actual test data mean
to maximum range. The test data values and the strain-life constants were imported from
the Excel® file into a MATLAB® file (“strainlife9.m” Appendix B). That program

computed the mean value and range of each strain level. The average data variation was
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then computed by dividing one half the range at each level by the average life at each
level. These values were then averaged to determine the mean variation of the uniform

distribution of each of the 4 strain-life constants during Monte Carlo simulation.

“ariational Strainlife with Actual Test Data
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Monte Carlo Simulation of Strain-Life Equation:
Uniform Variation of Strain-Life Constants

Figure. 19.

The resulting probabilistic profile was entirely too wide. Variation of all 4
constants by an averaged amount of the 2Nf variation allowed for too much variability
into the solution. The investigator experimented with varying the degree to which the 4
constants were varied. Each parameter had a specific and significant impact on the
output. Large variations of the ductility constant resulted in very wide bands of scatter
in the low cycle region. Conversely, large variations of the strength coefficient resulted
in wide bands of scatter in the high cycle region. Variation of the exponents had similar
yet magnified effects. Nice fits of the data could be obtained by visual adjustment, in

other words, trial and error. Unfortunately, that method lacked a clear correlation to the
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data and was simply an engineering adjustment . (Square peg into round hole with big

hammer)

In order to visualize the impact the fatigue life exponents have on the Monte
Carlo solution, a simulation was completed in which only the 2 exponents (b,c) were

varied with the test data degree of variation. The other constants, o, and g} were held

constant. The following figure displays that simulation.

ariational Strainlife with Actual Test Data
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Figure. 20. Monte Carlo Simulation of Strain-Life: Variation of Exponents b and c, only

The exponents had a significant impact on the scatter of the Monte Carlo solution.
The next chart will demonstrate that it was the variation of the exponents that contributed
the most to the scatter of the simulation. Of course this only makes sense considering the

mathematical significance of an exponent compared to a coefficient! If the exponents

were held constant, the resulting simulation distribution of only o and g'f , appears to be

very good.
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Figure. 21. Monte Carlo Simulation of Strain-Life: Variation of o7, g}. only

Variation of the 2 coefficients, o g}. , provided the best solution to the model

that set parameter variation equal to the data variation . Although this method seemed to
describe the nature of low cycle fatigue, the figure demonstrates some obvious
deficiencies. Simulation with an averaged range doesn’t accurately describe the data
spread at every sample level. Possibly with a large sample of the population, these
inconsistencies would disappear. The greatest problem is with the strain-life equation
itself. It can readily be seen that the mean line rapidly diverges from the actual data in
the intermediate range. Since the high cycle data was generated only from the NAVAIR
laboratory, it is possible that high cycle fatigue samples tested in the METCUT lab may

have been a little closer to the mean line.

As a comparison of Monte Carlo models, the solution method (solving for 2Nf,
instead of seeding with 2Nf) was also computed using a 10% uniform parameter variation

of the 2 coefficients. The results are almost identical except for their output
38



characteristics. Unfortunately, the solution method of Monte Carlo simulation is
numerically intensive and took 30 minutes to generate. This is contrasted to the 2NF
seeding method, which completed the task in about 3 minutes. This program was called
“strainlife8a.m” Appendix C. Due to the time required to run this type of simulation, the

2Nf seeding method will be used exclusively through out the remainder of this report.
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Figure. 22. Coefficient Variation by Solution Method of Monte Carlo Simulation

C. DATA PROJECTION/PARAMETER VARIATION METHOD OF
CORRELATION

Another approach to predict life (2Nf) is presented in this section. Instead of
computing the final solution’s (2Nf) as a result of parameter variation during the Monte
Carlo simulation, a more specific estimation was derived. The approach was to break the
solution into the elastic and plastic parts of the equation and evaluate the contribution of
each parameter to the entire solution. This method would allow different variations
between parameters. Once the elastic and plastic strain regression lines were obtained,

the data points were projected about the regression slope back to the Y axis. This method
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assumed that the slopes (b,c) were constant. Using constant slopes the scatter about o

and &, was obtained with the following.

a,elastic = Yint X (Nf)b
Yint = ga /(Nf)b

&

Constant Slope Projections
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Figure. 23. Constant Slope Projection Visualization

This method demonstrated a greater variability for the fatigue ductility constant

g'f, than the fatigue strength constant o. After projections the following data was

obtained:
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Table 2. Elastic and Plastic Y Intercepts
Elastic Ints  |Plastic Ints
max 0.01139211] 1.39956605
i 0.0107 4653 1.0570559
range 0.00064553 0.34261015
Mean 001096709 1.13431111
Yadey 0.02943036 015102124

This approach quantified the larger variation of the data spread for the plastic
points as compared to the elastic points.
previous section, all parameters were varied with the same degree of variation as the final

solution. Since it was shown that the variation of the exponents adversely affect Monte

Carlo simulation, b and ¢ were held constant. The fatigue ductility constant, g'f , was

varied with a uniform distribution with a range from 1.06 to 1.4.

constant, o, was varied with a uniform distribution of range .0107 to .0114. The

following figure shows the resulting Monte Carlo simulation.
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This method demonstrated good correlation through the LCF range, although the
solution was erroneous for the HCF range for reasons previously discussed. This model
has a subtle difference to the previous two, coefficient variation models. Although they
both appear almost identical, the second method results in a smaller scatter band in the
HCF range. In the “solution variation equals parameter variation” model there was a
wider band of variation in the HCF range. This is because the fatigue strength constant
was only uniformly varied by about 3% from the mean in this model instead of 10% in

the previous model.
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VI. BEST SOLUTION METHODS

A. OVERVIEW

It became apparent during the course of this study that there was no simple
solution or Monte Carlo simulation that would correctly model the present test data and
provide a reasonable probabilistic model. This was due in part to the fact that there was
not enough data collected at the strain levels to clearly define a distribution.
Additionally, the fact that two separate laboratories’ test results were used, one lab
providing LCF and one lab providing HCF, caused the test data to be ill-behaved to the
standard strain-life equation model. The investigator realized without an accurate
prediction of some parameter of the test data (probably a mean value), that accurate
probabilistic model could never be built. For this reason, the investigator attempted
many methods to establish some function that would accurately predict all mean values.
Such methods included developing an algorithm that would fit a line between each mean
data point, the use of alternative functions to the strain-life equation, incorporation of an
8 constant strain-life equation, and the use of evolutionary algorithms and genetic
algorithms to model the test data. The final result should come as no surprise. There are
an infinite number of ways to fit the data points, each with it’s advantages and
disadvantages, accuracies and inaccuracies.  The best-fit model developed for this
material would in no way have any correlation to any other material. However, the
methods and concepts evaluated herein may be of adopted for other material behavior.
However, each new material will require a rigorous investigation to create a best-fit
probabilistic model for each particular material. As in all engineering, there are no easy
solutions! The remainder of this chapter will discuss the development of some of the

more useful and accurate methods.

B. STRAIGHT LINES METHOD

The most obvious and simplest method that could be useful in the development of
a probabilistic model is the use of fitting a straight line between the mean data points.

This model would work very well for tests in which data for many strain levels were
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available. In the limit, of an infinite number of strain levels tested, there would be a
smooth curve. Upon completion of the accurate determination of the mean points, and
with a solid understanding of the actual distribution of the fatigue scatter, Monte Carlo
simulation could be run to define the scatter distribution outside the tested range. An
even more simple method would be to use the distribution profile described by the data at
each strain level and connect alike probability likelihood estimators. The following
figure shows such a curve and is obtained from “strainlifelinz.m” Appendix D.

Lingar Solution of Prabability Profile
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Figure. 25. Linear Solution of Probability Based Fatigue Life Model

This depiction does not look like a good solution, however, it is the most accurate
of all solutions based on the data obtained from testing. The red bands depict the
maximum and minimum values that were obtained from testing. Since there was no
conclusive probability distribution obtained from the data, the best guess for a probability

distribution would be a uniform distribution between the maximum and minimum points.
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If a distinctive probability distribution could be obtained from the data, then the defining

parameters could be incorporated to enhance this simple solution.

C. 4 PARAMETER PIECE-WISE ALGORITHM

Having previously established that the 4- parameter, Strain-Life equation could
not fit all the test data points effectively, the investigator improved the previous straight-
line method. This method involved breaking the data sets up into pairs as was done in the
previous straight-line method. Instead of fitting a straight line between the points, a
curve defined by some variation of the Strain-Life equation, was fit between the two
points. Essentially, each segment was created from the Strain-Life equation with it’s own

particular set of parameters.
PIECE-WISE, 4 PARAMETER STRAIN-LIFE ALGORITHM
l. Create (uniform or normal) random vectors of the 4 parameter possibilities
for each parameter (a(’f , 5_;, ,b,c) .

2. Evaluate the 4 parameter (o7, 5_;, ,b,c) equation at the first data point.

3. Find all the combination sets of parameters that provide the solutions

within a specified tolerance from the known data point.

4. From those sets of best fit parameters, find the set that was a best fit to the

next data point.

5. Plot the function from the first data point to the second data point.

6. Establish the second data point as the new first data point and then repeat
Steps 1 through 5.

The program “strainlifega.m”, (Appendix E.), was developed to evaluated the best
fit to the data and to run Monte Carlo 2Nf seed simulation at the same time. The

following figure was produced from a run of this program.
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Figure. 26. 4 Parameter Evolutionary Algorithm

Because each partial solution was determined between two data points, the final
solution is very similar to the straight-line method. This method does allow for some
small amount of curvature to be introduced between points. This further optimizes the
probabilistic model. This model only defines an average range of variation based on the
actual data. If more conclusive test data was available, the probabilistic model could also
include probability bands. This chart further demonstrates the possibilities that a
probabilistic model might have over the conventional methods. In chapter 2, NAVAIR’s
definition of FLE was defined as 2 the mean life. (If !) further research positively
identifies the range of scatter to be that described by this model, then there would be a
distinct advantage in using the probabilistic model to extend service lives beyond 100%

FLE.

D. POSSIBLE 8 PARAMETER SOLUTION

After attempting to make the strain-life equation fit the test data with a variety of

different techniques, the investigator realized that the irregularity of the data would not
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permit a solution with only 4 constants. Experimenting with possibilities, the investigator
rationalized that 8 constants had to be better than 4. Similar to a higher order polynomial
in normal linear space, the investigator attempted to fit the data with the following

equation.

g, = Ax2Nf" + Cx2Nf* + Ex2Nf’ + Gx2Nf"

The following figure shows the results, demonstrating that 8 constants provide a
significant amount of flexibility in crafting the fit of the data points and may provide for

an exact fit to the test data.
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Figure. 27. Demonstration of 8 Parameter Strain-Life Equation

This fit, which was done in about 10 minutes by trial and error, comes very close
to accurately predicting a mean line.  The investigator believed that advanced methods
of numerical analysis might find the exact solution. The use of 8 parameters may not
always be useful in correcting the strain-life equation. This data set was particularly hard

to fit to known functions. Other sample data sets may find the use of a six constant
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equation and the present algorithm useful in determining a best fit to sample data. The

coefficients and exponents of this 6 or 8 constant equation do not need to correlate to any

physical parameter like o etc., however, the use of the known elastic and plastic

parameters may provide an initial guess for the solution.

E. EVOLUTIONARY ALGORITHM (PSEUDO-GENETIC ALGORITHM)

Having determined that a better solution to this set of data points might best be fit
with an 8 constant equation, the investigator tried a variety of methods to solve the
problem. The investigator drew upon the idea of “genetic algorithms”, which will be
covered in more detail later in the paper. Essentially, the idea involved finding the
solution, by attempting many different possibilities using random number generation.
This algorithm was slightly more complex because random numbers were used to
generate the exponential values, and then a non-linear, least squares curve-fit was used to
evaluate the coefficients. After a large number of “tries” the best solution was picked

based on the error of each possible solution.

RANDOM EXPONENT/ NONLINEAR LEAST SQUARES CURVE-FIT

ALGORITHM
l. Randomly pick 4 exponent values from within a prescribed range.
2. Pass the exponential parameters into a function that will determine the

coefficients of that particular set based on a non-linear least squares curve

fit.

3. Evaluate the weighted error of that particular set of 4 randomly varied

exponents and the solution of 4 coefficients.
4. After a prescribed number of iterations, sort the sets for the least error.

5. Plot the function from the least error set.
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This algorithm was used to generate “strainfit.m” Appendix F. The results are

presented in the following figure.
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Figure. 28. 8 Parameter Curve Fit Compared to Coffin-Manson

This was the result of 5000 sets of random exponents with the matching computed
coefficients. This method is an obvious improvement from the Coffin-Mason Strain-Life
equation because it does a better job of describing the overall curvature of the fatigue life
phenomenon. However, even with advanced solution methods, there was still a
discontinuity of the solution at the knee. Possibly a better solution was found by the

investigator’s trial and error method!
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g Parameter Trial and Error Solution
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Figure. 29. Good Engineering Guess Rivals Complex Mathematics

Not that the investigator renounces the use of computers, but there is an irony that
a solution which was completed quite simply in about 10 minutes is better than what a
fairly complicated algorithm determined after 5000 iterations. Note that the trial and
error solution only failed to accurately place one data point within the predicted range,
while the computer solution failed to correlate 4 data points. This discrepancy was

completely a function of the calculated mean line since both Monte Carlo simulations

varied the solution about the determined mean line by exactly the same amount.

F. GENETIC ALGORITHM METHOD

Another attempt made by the investigator to lay the foundation for a probabilistic
model, was with the use of “Genetic Algorithms”. The idea behind such a method was
to assume that a so-called “chromosome” could be encoded with information about the
solution. The chromosome must be relatable to some parameter of the function. The
chromosome is usually a string of ‘1’s and ‘0’s, 30 bits long. Thus a binary
representation of any number between 0 and 1073741823 is possible. These numbers are
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then mapped into the range that the variable is expected to lie within. Multiple
chromosomes are then created (possible solutions). These possibilities are evaluated for
their “fitness” to the desired solution. If none of the solutions are satisfactory, then a
pseudo-random selection of the best chromosomes, subsequent mating, cross-over and
mutation of the genes, results in a new population of chromosomes (answers).
Eventually, after several generations, an answer is usually found. The difficulties with
this method can be in relating a chromosome to some aspect of a fitness function of the
problem. Usually, genetic algorithms are used to either minimize or maximize a solution.
The selection of a fitness function to minimize or maximize in the case of this data set
was particularly challenging. [7,8]

In an attempt to solve the 8-parameter Strain-Life equation, the investigator
attempted to use genetic algorithms. Each of the 8 parameters was drawn from a 30 bit
element of a 240 bit long chromosome. In this manner each particular chromosome
represented a set of 8 parameters with a corresponding strain vector. The algorithm is

provided below. [9]
8 PARAMETER GENETIC ALGORITHM
1. Establish the length of the chromosomes and the population size
(# of chromosomes per generation)
2. Determine the probability of cross-over between chromosome “parents”

3. Initialize the chromosomes by setting each bit to a 1 or a 0 with the use of

random number generation.
4. Import each chromosome individually into the function.

5. The function breaks the chromosomes up into smaller pieces representing
the 8 parameters. (Formally, these steps are referred to as; concatenation,

multi-parameter-mapping, and fixed-point coding.)

a. The binary information is converted to decimal and then mapped to a

decimal value within the range specified.
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10.

b. After each part of the chromosome has been mapped into the
appropriate range, the 8 parameter strain life equation is evaluated at the

known 2NF mean values from each test range.
c. The strain vector answer is then compared to the actual test data.

d. The weighted, maximum percent errors are normalized which
represents the magnitude of the error. This becomes the fitness function
corresponding to the particular chromosome and is passed back to the

main program.

After each chromosome from the population has been evaluated, the set is

sorted by smallest fitness (error) to largest error.

The two best chromosomes (smallest error) are taken to be the king and
queen. The king and queen chromosomes are the first two chromosomes
for the next generation to ensure the best answers are not discarded

randomly.

The king and queen are also mated by passing them to the cross-over
program which determines for each of the 8 partial strings within the
chromosomes, whether or not,(and if so, how much) there will be a flip-
flop from the chromosome of one partial string to the corresponding
chromosome of the other partial string. After each partial string has been
evaluated and cross-over has occurred, the program determines if a small
amount of mutation should occur and if so to which Allele. (Allele are the
individual 1s and 0s). Allele mutation permits the possibility of a lucky

solution being interjected along the way to a final solution.

The king and queen are mated approximately 10 times to produce 10 new

chromosomes for the new population.

After the king and queen have finished mating, a larger set of new
chromosomes is developed in the same manner. However, the parents are
randomly picked from the old population for each set of new

chromosomes. This set is called the “Clampetts”.
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11.  After all the Clampetts have mated, another completely random set is re-
initialized, referred to as Melting-Pot. From this completely random set,
approximately 20 more parent sets are selected and mated. This process
allows for the rapid incorporation of new blood into each generation and

prevents the solution from stalling.

12. After a predetermined number of generations, the chromosome
corresponding to the best answer for the present generation is correlated to

the 8 parameters and the modified strain-life equation is plotted.

The real difficulties with this method involved, selecting a performance criteria.
The magnitude of the positional errors alone was not enough to obtain a good solution.
When only the difference between the test data and the solution was used, the genetic
algorithm tended to fit a straight line through the data, exactly what the investigator did
not want to happen. A method of evaluating the slopes between data pairs was also
investigated. This method worked well to mirror the shape of the curve, but the curve did
not lie on the line. Thus a combination of the two methods was selected. In addition to
both slope and position errors, elements that were deemed the most significant were also
weighted to draw the solution through those points or draw the solution toward a slope.
The following figure is a plot from the MATLAB® file “8paramGA”. This algorithm
requires 19 separate MATLAB® programs. These programs are reproduced in Appendix
G.
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Genetic Algorith Best Fit to 8 Parameter Equation
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Figure. 30. Genetic Algorithm 8 Parameter Solution

Even with the complexity of this algorithm, the weakest link was the fact that
there were difficulties making the solution fit all the data points. This was because a
restrictive enough error function has yet to be determined. If a error function could be
developed that would give equal importance to all data points in both location and slope,
then the genetic algorithm could probably solve the 8 parameter equation. Another
problem with the genetic algorithm was that the range of parameter constants was very
important. If the range was too limited, then no solution was found. If the range was too
wide, the solutions varied wildly. There was the additional problem of decimal values.
As an example, if the selected range for chromosome mapping was 0 to 1, then even with
a 30-bit string, the probability of finding a number between 0 and .1 is only 10%. If the
number sought is less than .01 the probability drops to 1%. This problem exists even

though the idea of genetic algorithms was to infuse an almost infinite number of
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possibilities to the solution, in fact, there was a much higher likelihood of larger scaled
numbers selection. The logic would say that if the investigator wants to find an answer
between 0 and .01, then establish that as the range. Unfortunately, when that was done,
the first problem presented itself and the range was too restrictive to allow a solution to
be found. (One approach that may be used to address this problem is to use power-law
scaling and mapping as opposed to a linear scaling used in the present implementation.)
An attempt was made to see if error minimization would continue through a large

number of generations, even if there was a flaw with the fitness function.

p Genetic Algorithm for 8 Parameter Equation
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Figure. 31. Genetic Algorithm after 15,000 Generations

Unfortunately the solution at 500 generations was about the same as that done
with 15000 generations. Clearly, the fitness function needs to be improved to drive the

solution to match all mean test data points.

G. OTHER SOLUTION OPTIONS AND IDEAS

The previously mentioned methods represented only a few of the best possible

solutions to this particular problem. Many other manipulations were tried with varying
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degrees of success. A few will be mentioned here because the ideas could be of use to

other problems.

Probably the most significant “other” method was also a simple one. Since
neither the elastic data points nor the plastic data follow a straight line in log space
throughout the range of life, a varying slope method would be an obvious option.
Typically, the plastic data points follow a fairly linear trend until the intermediate range
when the plastic strain drops off dramatically. This phenomenon significantly contributes
to the knee of the total strain points. Plastic strain is not alone in its bad behavior. The
elastic strain also exhibits a tendency to follow a line up until a point in which it also
reduces significantly. If the problem is carefully broken down into smaller pieces and
regressions are done across a smaller range of data, then the slopes of the equations could
periodically be revised during the course of the probabilistic model. This method will
provide the best approach,( other than the straight-line method!), to correcting for the

knee problem.

Along the same idea as the previous method would be the use of several different
equations for the material behavior. Each range (low, intermediate and high cycle) would
have it’s own equation. The only difference to the previous method is that this solution
would have 3 independent solutions whereas the previous had the same solution with

varying slopes and intercepts.

The genetic algorithm may have some use in finding the equation of a 4, 6 or 8
parameter equation in a specific region like the intermediate strain knee problem.
Additionally, the use of a single Y intercept variable slope equation was explored. For

this problem the rate of change of the slope was found to be log-linear.
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Figure. 32. Slope Rate of Change

This would imply that the following equation could be used to define the life.

& = Y % 2NF.0229Ln(2NF)—.7664

a int

The use of this equation may be a good fit for the low cycle region though the
intermediate range. It could not be used though-out the entire life due to the nature of the

natural logarithm function. The results are illustrated in the following figure.
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Al 7050-T7451 Test Data Fit With Natural Log Exponent Expression
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Figure. 33. 3 Parameter Natural Logarithmic Function

The use of this equation is limited. However, the rate of change until 2Nf is
10,000 is log-linear and the 3-parameter equation fits the data points very well until the
10,000 cycle range. An attempt was made with the use of genetic algorithms to find a
better solution. However, without a perfected fitness function, the solutions obtained

were not satisfactory.
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VII. CONCLUSIONS

A. TESTING MUST PRODUCE CONCLUSIVE PROBABILITY
DISTRIBUTION CHARACTERISTICS.

Without sufficient test data, it would be difficult to accurately develop a
probabilistic strain-life model.  Since the reason for such a probabilistic model is to
stretch the range of life beyond traditional methods, the level of accuracy of the testing
must be extremely high with a very high level of confidence. The test data for Al 7050-
T7451 does not show any conclusive trends toward a probability distribution. Ultimately
the testing may show that the data does exhibit a normal distribution. However, at this
time, with the present test data, the investigator does not feel that it would be appropriate
to assign a known probability distribution this data set if it is to be used in a subsequent

life-extension analysis

B. VARIABLES CONTROLLING THE SCATTER MUST BE MEASURED
AND QUANTIFIED AS THEY RELATE TO THE PROBABILITY
DISTRIBUTION OF THE ACTUAL MATERIAL.

If the current testing is tightly controlled, the probability distribution may show a
normal or log normal, or Weibull distribution, with a very small standard deviation.
However, how does this idealized sample correspond to a real-world piece of metal in an
actual aircraft component? To extend service life by inference to the probability
distributions of idealized samples would lead to certain disaster. A comprehensive look
must be made at all possibilities of the material variations that may be used to make

aircraft components.

C. THE CENTRAL LIMIT THEOREM MAY NOT BE AN ACCURATE
ASSUMPTION, DEPENDING ON HOW THE TESTING IS COMPLETED.

The normal distribution and the central limit theorem may not be an accurate
assumption for current material fatigue test data sets. With refined methods of testing
methodology and material manufacturing, the degree of randomness required for a

Gaussian distribution may no longer exist. Imagine a random selection of people taken
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near the exit of a NBA locker room. There would obviously be some pseudo-normal
distribution with a very small standard deviation. The mean would be about 6°6’°. Now
imagine that a random sampling of people was taken of people coming out of the midget
tent at the circus. Again, a normal distribution would characterize the population. This
time the mean would be about 3°6’’! Now imagine those two sample sets were grouped
and used to describe the characteristics of a random population of all people in the world.
Both sets were both drawn randomly. Would the total probability distribution
demonstrate the central limit theorem? Obviously not!  This is much the same as
materials testing. If only NBA basketball stars are measured, but the world (of materials)
includes midgets, then the probability model to extend life is flawed. Before this
probability model can be completed, the investigators must understand how the midgets

and the NBA stars will affect the total solution.

D. IT IS MUCH SIMPLER TO MODEL THE MONTE CARLO
SIMULATION WITH USE OF THE 2NF SEEDING METHOD INSTEAD
OF SOLVING FOR THE STRAIN AT EACH LEVEL.

The fact that the 4-parameter strain-life equation must be solved for with some
sort of non-linear solver makes the 2NF seeding method much simpler to use. By placing
many thousands of uniformly spaced 2NF data points into the simulation, determining the
corresponding strain is simply a matter of evaluating the expression. This saves a
significant amount of complexity and computational time. This method also does seem

to be an extremely effective way of characterizing the nature of the total range of strain.

E. VARY ONLY THE 2 COEFFICIENTS OF THE STRAIN-LIFE
EQUATION DURING MONTE CARLO SIMULATION.

Varying the exponents (b and c) of the strain-life equation invokes too much

scatter to the probabilistic solution. ~ The perturbation of the coefficients, o 5}

results in a profile that is sufficiently varied to characterize the scatter of the test data.
For materials that exhibit strange variations, small variations of the exponents may help

to model the behavior.
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F. THE CORRELATION OF THE TEST SCATTER TO THE CONSTANT’S
VARIATION, IS BEST DESCRIBED BY THE SIMPLEST METHOD.

There may be other formal methods that could describe the amount of
perturbation required by the coefficients to model the probability distribution of fatigue
data. However, the investigator found that simply varying the coefficients by the same
percentage variation as the test scatter resulted in a satisfactory Monte Carlo simulation.
Once a more complete set of testing has occurred, there may be a requirement to adjust
this simple variation for more complex methods in order to predict more formal
probability distributions. Currently, a uniform variation of constants is used. Accurate
prediction of a normal distribution of test data may require the use of a normal variation

of parameters.

G. IN ORDER TO CREATE A PROBABILISTIC MODEL OVER THE
ENTIRE FATIGUE LIFE, A FUNCTION OR ALGORITHM MUST BE
SPECIFIED THAT FITS ALL CHARACTERISTICS.

The “knee” and other irregularities cannot be fit with the use of the standard 4-
parameter strain-life equation. If a probabilistic model is attempted, the data points near
the “knee” or “the transient zone” will not lend themselves to be modeled accurately.
The probabilistic model needs some sort of anchor point at each strain level about which

a probability distribution may be defined.

H. AN EIGHT PARAMETER STRAIN-LIFE EQUATION MAY WORK TO
SATISFACTORY FIT ALL CHARACTERISTICS OF FATIGUE LIFE TO
INCLUDE THE “KNEE”.

A strain-life equation that is the sum of 4 log-linear segments affords the
flexibility to model the shape of the mean fatigue life with more accuracy than the 2-
segment strain-life model. These 4 segments have no physical interpretation like elastic
part and plastic part. However, the elastic and plastic equations can provide a baseline

for estimation of all the 8 parameters.

I FINDING THE RIGHT MIX OF THE 8 PARAMETERS IS EXTREMELY
DIFFICULT.
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The best method found was using a random variation of the exponents and then
using a least squares-nonlinear solver to evaluate the corresponding coefficients until a
satisfactory solution was found. As computationally advanced as this method was, it still
was not better than the investigator’s eye, patience and best guesses (namely, the

heuristic approach).

J. GENETIC ALGORITHMS ARE AN IMPROVEMENT OVER RANDOM
NUMBER SOLUTION FINDING TECHNIQUES, BUT THEIR
ACCURACY IS, IN PART, FITNESS FUNCTION DRIVEN.

The manner in which a genetic algorithm seeks out the answer speeds up the
solution process significantly over standard random number generation. However, better
fitness function definitions must be developed before genetic algorithms can provide

satisfactory solutions.

K. THE BEST MODELS MAY BE OBTAINED FROM THE SIMPLIEST
METHODS.

The quickest and most accurate models were the simplest. Drawing a straight
line between the mean data points from one level to the next, leaves no room for
question. If enough strain levels are tested, these straight lines essentially define the

curve.

Obviously, if only 2 strain levels (one low cycle and one high cycle) were tested
then the straight line method would not predict the fatigue life at all, but how well would
the data be represented anyway! Certainly, investigators could use the two levels to do a
regression and then compute the elastic parts and plastic parts. Thus the stain-life
equation could be used to create a curve of sorts that would theoretically describe the

behavior. However, life prediction between the two points would not be realistic.

Does this mean that there should be tests taken at every strain level? (Certainly
not.) The number of strain levels taken during these tests accurately describes the

materials behavior in the region tested.
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Another very simple model was the strain-level to strain-level, piece-wise
solution of the 4-parameter strain-life equation. This algorithm added the ability for the
final solution to have a degree of curvature. The slight curvature enhanced the accuracy

of the final probabilistic model by rounding off the corners of the straight-line method.

Monte Carlo simulation of the 4, 6 or 8 parameters might make the testing
evaluator feel more confident in his probabilistic model since it simulates the testing of
tens of thousands or hundreds of thousands of samples. However, the best results will be
obtained from connecting lines or curves, of confidence intervals from one strain level to

the next as was done with the mean line fit.
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VIII. RECOMMENDATIONS

A. MORE TESTING IS THE STANDARD AND OBVIOUS ANSWER.

If aircraft must be extended beyond their current FLEs, then a very sound decision
can only be made from sufficient evidence. If service lives are extended without enough
testing, then the evaluators are betting against the very good intuition of many years of
engineering experience and basing there assessment on un-conclusive data. More testing

is definitely required.

Specifically, several strain levels should be selected in which to test a much larger
number of samples. The investigator makes a guess that at least 25 samples will be
required if a normal distribution does exist. The large number of samples is not
necessary at all strain levels. 4%, 1% would be useful in characterizing the nature of low
cycle fatigue. .9%,.7%.and .6% should be tested in large numbers to examine the
probabilities associated with the “knee”. One or two levels of lesser sample size should
also be tested here to better characterize the shape of the knee. .04% and .02% could

describe the nature of scatter in high cycle fatigue with a larger set of samples.

B. TESTING MUST ATTEMPT TO QUANTIFY THE VARIABILITY
ASSOCIATED WITH CHANGES BETWEEN MANUFACTURES, GRAIN
ORIENTATION, AND ANY OTHER MATERIAL CHARACTERISTICS
THAT AFFECT LIFE.

Testing should include purposeful variations of the material in order to quantify
the true nature of the actual aircraft construction materials. Testing methods should

follow the ideas presented in Chapter II, section F.

C. A BETTER FITNESS FUNCTION MUST BE DEVELOPED THAT WILL
ALLOW FOR A GENETIC ALGORITHM SOLUTION TO THE 8-
PARAMETER EQUATION.

The 4-parameter strain-life equation may work for some materials if the nature of
the “knee” is not too severe. Otherwise, an 8-parameter equation will sufficiently model

and fit the data. Preliminary investigations revealed the difficult nature of the
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uncertainties associated with fatigue data modeling. However, development of
appropriate fitness functions reflecting the location and slope of the strain-life curve may

result in satisfactory modeling of the fatigue life prediction using genetic algorithms.

D. TESTING MUST BE COMPLETED TO ESTABLISH CORRELATION
BETWEEN % LOAD DROP AND .01 INCH MICRO-CRACK.

Since NAVAIR’s Fatigue Life Expended (FLE) definition is based upon a 1 in
1000™ chance of a .01 inch micro-crack in existence, testing must establish at the % load

drop to crack size relationship.
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APPENDIX A(1) NAVAIR HCF DATA

MAVAIR HIGH CYCLE FATIGUE DATA
Sample  |Total Strain|2MF Cuplicate
HP1-45 0.005 25246 25246
HP1-25 0.005 26134 26134
HP1-56 0.005 26420 26420
HP1-33 0.005 26565 26565
HP1-6 0.005 26842 26842
HP1-57 0.005 27B06E 27606
HP1-29 0.005 27718 27718
HP1-14 0.005 28130 28130
HP1-21 0.005 28314 28314
HP1-3 0.005 28645 28645
HP1-17 0.005 28872 286872
HP1-41 0.005 29468 29468
HP1-52 0.005 29900 29900
HP1-12 0.005 30126 30126
HP1-40 0.005 30764 30764
HP1-43 0.004 BE852 66852
HP1-15 0.004 BE97 4 53974
HP1-7 0.004 B9706 59706
HP1-53 0.004 71308 #1308
HP1-26 0.004 75256 75256
HP1-31 0.004 51280 51280
HP1-2 0.004 83575 83575
HP1-50 0.004 84185 84185
HP1-24 0.004 54962 54962
HP1-38 0.004 85514 85514
HP1-36 0.004 57954 57954
HP1-46 0.004 58486 58486
HP1-9 0.004 58604 88604
HP1-19 0.004 89232 89232
HP1-58 0.004 95990 95990
HP1-8 0.003 1581300 191300
HP1-39 0.003] 256118] 256118
HP1-32 0.003] 261872 261872
HP1-18 0.003] 264112 264112
HP1-11 0.003] 2B4556| 264556
HP1-28 0.003] 279370 279370
HP1-1 0.003] 291176] 291176
HP1-60 0.003] 291626 291626
HP1-22 0.003] 295618 295618
HP1-54 0.003] 303112] 303112
HP1-35 0.003] 307076 307076
HP1-47 0.003] 329952 329952
HP1-13 0.003] 331346] 331346
HP1-49 0.003] 341598] 341598
HP1-44 0.003] 351354 351354
HP1-27 0.0025 597166 597166
HP1-51 0.0025 BO9734| 609754
HP1-42 D.0025| BS2596( B525595
HP1-48 0.0025| EBEDS34| BEOS54
HP1-23 0.0025| BBES700[  BBS700
HP1-55 0.0025| BB6404( 686404
HP1-30 0.0025 738994 735994
HP1-59 00025 7B2730( 762730
HP1-37 0.0025| B32536 832536
HP1-34 0.0025| B©95578| B95875
HP1-61 0.0022| 1370062 13700B2
HP1-5 0.002] 20153752 20153782
HP1-20 0.002] 20167300] 20167300
HP1-4 0.002| 20467756 | 20467756
HP1-10 0.002| 20494218] 204942158
HP1-16 0.002] 24657924 | 24657924
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APPENDIX A(2) METCUT LCF DATA

METCUT LCF 2% Load Drop

Test Numbe| Max Strain LD segment | Elastic Plastic
IPE2-2 0.005 0.02 11387 | 0.005654| 0.000307
P25 0.005 0.02 13211| 0.005702| 0.000276
IPZ2-3 0.005 0.02 115811| 0.005781| 0.000203
IPEZ2-3 0.005 0.02 12203| 0.005731| 0.00022
[PE2-10 0.005 0.02 12729 0.00571| 0.000292
IPE2-11 0.005 0.02 11921| 0.005634| 0.000314
[PE2-14 0.005 0.02 13553 0.00571| 0.000304
IPE2-15 0.005 0.02 12547 | 0.005652| 0.000315
[PE2-17 0.005 0.02 9045) 0.005727| 0.000237
[PE2-20 0.005 0.02 13257 | 0.005733| 0.000249
[PE2-22 0.005 0.02 11391 | 0.005636| 0.000343
[P52-24 0.005 0.02 12875| 0.005703| 0.000302
[P52-25 0.005 0.02 12871| 0.005677| 0.00033
[PE2-27 0.005 0.02 10649| 0.005657( 0.00031
IP52-29 0.005 0.02 11231| 0.005652| 0.000346
P21 0.007 0.02 4277 0.006269| 0.000711
IPE2-5 0.007 0.02 5757 0.006212| 0.000737
IPG2-7 0.007 0.02 5793| 0.005205| 0.000758
P23 0.007 0.02 B327| 0.005279| 0.000739
[PE2-12 0.007 0.02 B217| 0.00629| 0.000727
IP52-13 0.007 0.02 5775| 0.0052558| 0.000757
IPE2-16 0.007 0.02 5357| 0.006295| 0.000731
IP52-18 0.007 0.02 5511| 0.005242| 0.000756
[P2-19 0.007 0.02 5455| 0.005259| 0.000707
IP2-21 0.007 0.02 56E9| 0.005252| 0.000722
IPE2-26 0.007 0.02 5413| 0.005305| 0.000637
IP52-23 0.007 0.02 BE31| 0.005233| 0.000733
[P52-30 0.007 0.02 5345| 0.005254| 0.000723
LPG2-3 0.0$m2 0.02 1361 0.006701| 0.005305
LPG2-3 0.0$m2 0.02 1453 | 0.006624) 0.005291
LPG2-11 0.0$m2 0.02 1485| 0.006655) 0.005295
LPG2-18 0.0$m2 0.02 1563 | 0.006661| 0.00529
LPG2-21 0.m2 0.02 15587 | 0.006652| 0.005349
LPG2-29 0.0$m2 0.02 1471| 0.006654| 0.005335
LPG2-33 0.0$m2 0.02 1521| 0.00657| 0.005315
LPG2-37 0.0$m2 0.02 1643| 0.006562| 0.005415
LPG2-42 0.0$m2 0.02 1205| 0.00674| D.005259
LPG2-50 0.0$m2 0.02 1551 0.006713| 0.005297
LPG2-52 0.0$m2 0.02 1501 | 0.006663) 0.005327
LPG2-57 0.0$m2 0.02 1517 | 0.006711] 0.005295
LPG2-E5 0.0$m2 0.02 16587 | 0.006651| 0.005323
LP G266 0.0$m2 0.02 1573| 0.006683| 0.005293
LPG2-75 0.0$m2 0.02 1423| 0.00664| 0.005354
LPG2-2 0.0$15 0.02 925| 0.00535%| 0.00315
LPG2-5 0.0$15 0.02 977| 0.005305| 0.008187
LPG2-13 0.0$15 0.02 10538 | 0.006835) 0.003154
LPG2-19 0.0$15 0.02 1047 | 0.0067581| 0.00315
LPG2-24 0.0$15 0.02 1005| 0.00683) 0.003163

acheck
0.005001
0.005979
0.005934
0.005951
C.006002
0.005997
0.006014
0.006007
C.006024
0.005932
0.005979
0.006005
0.006007
0.005997
0.005993
000593
C.005999
0.006955
C0.007018
0.007017
0.007025
0.007025
0.006993
0. 006965
0.00697 4
0.00E992
0. 006965
0.007 005
0.012007
0.011935
0.01195
0.011951
0.012001
0.011992
0.011935
0.01193
0.011999
0.0120
0.011995
0.012005
0.011974
0.011932
0.011994
0.01501
0.014992
0.014933
0.014952
0.014993



LPGE2-26 0.015 0.0z 869 0.005795| 0.005191
LPE2-35 0.015 0.0z 9y5| 0.006832) 0.005164
LPE2-40 0.015 0.02 997 0.00679| 0.005195
LPE2-45 0.015 0.02 899 0.006551| 0.005165
LP=2-49 0.015 0.0z 977 0.006535) 0.005164
LPG2-55 0.015 0.0z 1067 | 0.006552| 0.005153
LPS2-59 0.015 0.0z 1089 0.006559| 0.00513
LPE2-51 0.015 0.0z 1023 0.006524 | 0.005165
LPE2-B9 0.015 0.0z 1043 0.006547 | 0.005135
LPE2-73 0.015 0.0z 899 0.005755| 0.005226
LPE2-5 0.0z 0.0z 4583 0.00711 0.01293
LPE2-5 0.0z 0.0z 5585| 0.007036| 0.012955
LPGE2-15 0.0z 0.0z 585 0.007096| 0.012895
LPE2-17 0.02 0.02 537 0.00713%9) 0.012897
LPG2-25 0.02 0.02 551 0.007013) 0.012977F
LPE2-30 0.02 0.02 559 0.007065 | 0.012951
LPZ2-52 0.02 0.02 593 0.007046] 0.012925
LPS2-39 0.0z 0.0z 571) 0.007097) 0.012862
LPZ2-41 0.0z 0.0z 577 0.007091) 0.012892
LPS2-45 0.0z 0.0z 525| 0.007056| 0.0129354
LPE2-51 0.0z 0.0z 575| 0.00715| 0.012858
LPE2-558 0.0z 0.0z 558%9| 0.007043) 0.012945
LPE2-B3 0.0z 0.0z 595| 0.007093| 0.0125878
LPE2-70 0.0z 0.0z 579 0.007035| 0.012894
LPE2-71 0.02 0.02 557 0.007066E| 0.012906
LPGE2-4 0.03 0.02 223 0.007644| 0.022352
LPE2-10 0.03 0.02 239 0.007562| 0.0224354
LPZ2-12 0.03 0.02 246 0.007548| 0.022355
LPG2-20 0.03 0.0z 239) 0.007599| 0.022396
LPG2-23 0.03 0.0z 233 0.007541| 0.022453
LPG2-27 0.03 0.0z 261) 0.007549| 0.022439
LPE2-31 0.03 0.0z 237 0.007569| 0.022421
LPE2-36 0.03 0.0z 241) 0.007511| 0.022453
LPE2-44 0.03 0.0z 239 0.007571| 0.022427
LPG2-46 0.03 0.0z 241 0.00755| 0.022444
LPE2-60 0.03 0.0z 231) 0.007539| 0.022449
LPE2-64 0.03 0.02 239 0.007453| 0.022473
LPE2-65 0.03 0.02 243 0.007611] 0.022396
LPE2-74 0.03 0.0z 245 0.007572| 0.022415
LPE2-1 0.04 0.0z 133 0.0079) 0.032095
LPG2-7 0.04 0.0z 137 | 0.007853 | 0.032117
LPGE2-14 0.04 0.0z 143 | 0.007572| 0.031976
LPGE2-16 0.04 0.0z 139 | 0.007865| 0.032074
LPE2-22 0.04 0.0z 131 | 0.0077895| 0.032174
LPE2-25 0.04 0.0z 137 | 0.00783582| 0.032105
LPE2-54 0.04 0.0z 141 | 0.007555| 0.032142
LPE2-358 0.04 0.0z 137 0.00754| 0.032138
LPGE2-43 0.04 0.02 143 | 0.00735% | 0.032109
LPG2-47 0.04 0.02 137 | 0.007925| 0.032072
LPE2-53 0.04 0.0z 143 | 0.007215| 0.032075
LPG2-56 0.04 0.0z 135| 0.0075351 | 0.032159
LPG2-B2 0.04 0.0z 139| 0.007863| 0.032127
LPG2-67 0.04 0.0z 135| 0.007916| 0.032053
LPGE2-72 0.04 0.0z 141| 0.0073586| 0.032087
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3 Script File 'StrainlifeS9.m'

% Themas Heffern

% 17 July 2002 Modified 23 August 2002

3 This program generates many random strain life data points

3 based on experimental data from excel spreadsheet "newtestdatainputs"

3 "4
clear

format short
global FSC FDC B1 Cl1 E1;

$USER INPUTS

N = input ('Enter the number of calculations at each NF level, 1-100, N = '#
)i

lowest = input ('Enter the power of lowest strain level desired, ie. .0001 ¢

would = -2.5 (recommended!), lowest = "

highest = input ('Enter the power of the highest strain level desired, ie. ¢
.1 would = -1, highest = "):

et et ettt T '4

% import of test data groupings and data analysis from Test Data Inputs Exce
el worksheet

grpl = xlsread('newtestdatainputs','.006'};
grp2 = xlsread('newtestdatainputs','.007'};
grp3 = xlsread('newtestdatainputs','.012'});
grpd = xlsread('newtestdatainputs','.015'};
grp5 = xlsread('newtestdatainputs','.02")
grp6 = xlsread('newtestdatainputs','.03"');
grp7 = xlsread('newtestdatainputs','.04"');

% TEST DATA INPUTS

3 Input the basic constants, Data is read from excel spread sheet ' new t«¢
est data inputs’

% The constants have previously been computed in the excel file using a lo#
g-linear regression fit of the data

o
Kl

A = xlsread('newtestdatainputs', '"MATLABINPUTVECTOR") ; SNOTE THIS IS o
A COLUMN VECTOR

fse = A(1,1); tfatigue strength coeff

fde = A(2,1); tfatigue ductility coeff

b= A(5,1}); tfatigue strength exponent

c = A(8,1}); tfatigue ductility exponent

E = A(9,1}); % E modulus of elasticity

K]

testNFmean = [mean(grpl(:,3)),mean(grpZ(:,3)),mean(grp3(:,3)),mean{grpd(:, 3
) ) ymean{grp5(:,3)),mean{grpé(:,3) ), mea n(gr T(:,3))1:

testNFstd = [std{grpl(:,3)),std(grp2(:,3)) std[grpB{ 3)),std(grpd (:,3)), st
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dlgrp5(:,3)),std(grpée(:,3)),std(grp7(:,3))1;:
% using the uniform distribution model

testrange = [range(grpl(:,3)),range({grpZ(:,3)),range(grp3(:,3)),range{grpd («
:,3) ), range(grp5(:,3) ), range (grp6(:,3) ), range({grp7(:,3))1];

datavar = (testrange./2)./testNFmean;

meandatavar = mean(datavar);

g —————— "4

% Seeding the space with 2ZNF calculations
nf = logspace(l,2};
NE = [nf';nf'*10;nf"'*100;nf"*1000; nf"*10000;nf'*1000007];
NFsize = length (NF);
for i = 1:N;
NFmatrix(:,i) = NF;
end

% IF ALL 4 CONSTANTS ARE VARIED SAME AS DATA's VARIATION
strain = ((unifrnd({fsc-(meandatavar/1l)*fsc), (fsc+ (meandatavar/1)*fsc),NFsi¢
ze, N} ./E).* (NFmatrix).” (unifrnd( (b- (meandatavar/1)*b}, (b+ (meandatavar/1) *b) ¢
yMNFEsize, N} +

(unifrnd( {fdec- (meandatavar/1)*fde), (fdc+ (meandatavar/1l) *fdc) ,NFsize,N) ) o
LA (NFmatrix).” (unifrnd((c- (meandatavar/1)*c), (c+ (meandatavar/1l) *c),NFsize, N#
1)

loglog (NFmatrix, strain, "yv." ) % A rough, unsorted view of all data points
shold on
pause (1)

GNow all those random data points need sorting
% first make a vector of the data intervals in logspace
v = logspace(lowest,highest,5l);
count = 0;
empty = 0;
for 1vl = 1:50;
[I,J] = find(strain>y(1lvl) & strain<=y(lvl+l));
tempstrn= strain(I,J);
sortedstrain = tempstrn(:); Fsorted strain level ine
column
branch = isempty(sortedstrain);
if branch == 1
empty = empty+l;
elseif branch == 0;
count = count + 1;
tempNF = NFmatrix(I,J);

sortedNF = tempNFE(:); Fcorresponding NEs in oo
olumn

sortmeanlNF (count, 1) = mean(sortedNF);

sortmaxNF {(count, 1) = max(sortedNF);
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sortminNF (count,l}) = min{(sortedNF);
sortmeanstrain{count,l}) = mean({sortedstrain);
end
end
B e e e "4

% PLOTTING THE SIMULATED STRAIMN LIFE DATA

figure

loglog (sortmeanNF, sortmeanstrain, 'b', sortmaxNF, sortmeanstrain, 'b', sortminNE¢
,sortmeanstrain, 'b');

hold on

grid

title('Variational Strainlife with Actual Test Data')

xlabel {'2NF")

yvlabel {'Strain')

% PLOT THE ACTUAL TEST DATA POINTS FOR REFERENCE...THESE POINTS COME FROM C«
OMPANICON EXCEL WORK SHEET 'NEW TEST DATA INPUTS'
% ENSURE THAT THE SPREAD SHEET IS IN THE SAME DIRECTORY

act2NF = xlsread('newtestdatainputs', '2NFvector');

actstrain = xlsread('newtestdatainputs', 'Strainvector');

HCF = xlsread|('newtestdatainputs', 'NAVHCE'};

HCFZNF = HCF{:,3};

HCFstrn = HCEF(:,1);

loglog (actZ2NF,actstrain, 'k. ', HCFZNF, HCFstrn, "r.")
legend('simulated mean', 'simulated min', 'simulated max', 'METCUT LCF ¢«
data', "NAVAIR HCF data')

% PLOTTING BASIC STRAIN LIFE LINE (COFFIN-MANSON) FOR COMPARISON
NF2Z = [10:100:max (NF)];

stnlife = ((fsc/E).*(NF2). b)+fdc.* (NF2)."c;
loglog (NF2,stnlife, "k')
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% Script File 'StrainlifeBa.m'

5 Thomas Heffern

3 18 May 2002, revised 10 July, 12 July,

3 REVISED FOR PERFORMANCE AND NEW DATA on 23 August 2002

% This program generates many random strain life data points

% based on inputed experimental data from excel spreadsheet

3 " newtest data inputs"

% 2ZNF is solved by using the fzero command

% at various levels of strain...CAUTION...it runs very slowly

clear
format short
glokal FSC FDC BL1 Cl1 E1;

FUSER INPUTS

3 Define the random number permutations, 100 calculations in a given range
e should be plenty!

3 calculations greater than 500 may cause significant time (greater than «
24 hours!)

N = input ('Enter the number of calculations at each strain level, 1-100, N«
= "

lowest = input ('Enter the power of lowest strain level desired, ie. .0001 ¢

would = -2.5 (recommended!), lowest = "

highest = input ('Enter the power of the highest strain level desired, ie. ¢
.1 would = -1,  highest = "):

strain = logspace(highest, lowest);

SLnum = length{strain);

% import of test data groupings and data analysis from Test Data Inputs Exce
el worksheet

grpl = xlsread('newtestdatainputs','.006"};
grp2 = xlsread('newtestdatainputs','.007"};
grp3 = xlsread('newtestdatainputs','.012"};
grpé4 = xlsread|('newtestdatainputs','.015"});
grp5 = xlsread('newtestdatainputs','.02");
grp6 = xlsread('newtestdatainputs','.03");
grp7 = xlsread('newtestdatainputs','.04");

% TEST DATA INPUTS
% Input the basic constants, Data is read from excel spread shest 'test d¢
ata inputs'

o
o

A = xlsread('newtestdatainputs', "MATLABINPUTVECTCR") ; SNOTE THIS IS «
A COLUMNMN VECTOR

fse = A(1,1); tfatigue strength coeff

fde = RA(2,1); tfatigue ductility coeff
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b= RA(5,1}); tfatigue strength exponent
c = A(8,1}); tfatigue ductility exponent
E =A(9,1}; % E modulus of elasticity
testNFmean = [mean(grpl(:,3)),mean(grp2(:,3)),mean(grp3(:,3)),mean(grpd (:, 3¢
Jheeo-
mean (grp5(:,3) ) ,mean (grpe(:,3) ) ,mean(grp7(:,3))];
testNFstd = [std(grpl(:,3)),stdigrp2(:,3)),std{grp3{:,3)),std(grpd(:,3)),..¢

std{grp5(:,3)),std(grpb(:,3)),std{grp7(:,3))1:
% using the uniform distribution model
testrange = [range(grpl(:,3)),range{grp2(:,3)),range(grp3(:,3)),range(grpd (¢
3.
range (grp5(:,3) ), range (grp6(:,3)),range(grp7(:,3) )17
datavar = (testrange./2)./testNFmean;
meandatavar = mean(datavar);

for level = 1:5Lnum;

strnlevel = strain(:,level) % this helps user to monitor progrev
ss.

% This loop computes new random constants with a normal distribution ane
d then solves for the

% wvalue of ZNF in the strainlife equation using the fzerc function

% unfortunately the solver can only handle scalars, so this loop eats ue
p a lot of time

for iter = 1:N;
FSC = unifrnd{ (fsc- (meandatavar/1)*fsc), (fsc+{meandatavar/1)*fsc) )«

Bl = unifrnd({b-{meandatavar/1)*b), (b+(meandatavar/1)*b)};
FDC = unifrnd{ (fdc- (meandatavar/1l)*fdc), (fdc+ (meandatavar/1)*fdc) )«

Cl = unifrnd((c-{meandatavar/1l)*c), (c+(meandatavar/1)*c));

% I was having trouble getting these wvariables into the function..
% the 'save', then 'load' (in the function) commands works well.
save strainlifewvars

o
a

NE(iter,level) = fzero(@strnliffen, (1, 100000000000000000007);
% strain2 is created to ease in plotting vector creation
strainZ(iter,level) = strnlevel;

end % of the iteration loop

76



D:\StrainlifeBa.m

Page 3
Rugust 26, 2002 1:47:44 PM
end % of the strain levels loop
pause (2)
format short e
% CREATICN OF A USEFUL MATRIX OF STRAIN LEVELS AND CORRESPONDING ZNF
LIFE = [strain;NF];
B e e e e e v

% PLOTTING THE SIMULATED STRAIN LIFE DATA

5z THE EASY WAY of plotting all the simulated data points

loglog (NF, strain2)

grid

title('Variational Strainlife with Actual Test Data')

xlabel ('2NF'")

yvlabel ('Strain')

hold on
% Computation of the means and standard deviations at each simulated straine
level

for 1 = 1:5Lnum;
meanNF(:,1) = mean(NF(:,1)]);
maxNFE(:,1) max (NE(:,1));
minNE(:,1) min(NE(:,1));

end
loglog (meanNF, strain, 'b')
loglog (minNF, strain, "r',maxNF, strain, 'c')

% PLOTTING THE TEST DATA AND A PLOT OF THE BASIC STRATIN LIFE LINE AND STRND¢
ARD DEVIATICHNS

NFZ = [10:100:max(NF(:,level))];

stnlife = ((fsc/E).*(NF2) . b)+fdc.* (NF2)."c;
stnlifestdleft = (NF2-(stdnum*datawvar).*NF2);
stnlifestdrite = (NF2+ (stdnum*datavar).*NF2);

loglog (NFZ,stnlife, "k')
loglog (stnlifestdrite,stnlife, 'c',stnlifestdleft,stnlife,'c')

o ol
w
-
W
o
—
=]

% PLOT THE ACTUAL TEST DATA POINTS FOR REFERENCE...THESE POINTS COME FROM C#
OMPANION EXCEL WORK SHEET 'TEST DATA INPUTS'
% ENSURE THAT THE SPREAD SHEET IS IN THE SAME DIRECTORY
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powersl

g5

max [: >1,595,1089,1

b (loglO(strain{i))-loglO(strain (i+:
strain (i) /{NF{i)"b);

logspace {powers (1) ,powers (141} ) ;

int.*NFvect."b;

11/ (logl0{min(i))-loglO(min(i+1)));

(loglO{max(i))-loglO (max{i+1))});

b
int?2 tra i)/ min{i)~"k2);
maxvect logsp

(powers2 (1), powersZ (i+1)
stnZvect intZ.*minvect."b2;
loglog (NEwv

hold on

k', minvect, stnlvect, "'

"LOT THE ACTUAL TEST DATA POINTS FOR REFERENCE...THESE POINTS COME FROM
COMPANION EXCEL WORK SHEET 'TEST DATA INPUTS'
ENSURE THAT THE SPREAD SHEET IS IMN THE SAME DIRECTORY

#lsread('newtestdatainputs', '2NFvector');

s', 'Strainvector');

xlsread("'newt
i HCF'") ;

viabel (

brezak
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6,

% Strainlife
uniform disb sims

of point two defined by point one, both

clear
strain

minNF

r

maxNF [143,261,595,1089,1687,6631,13553,30764,95990,351354,895878,2465792¢
A7 .

=0

minperct minlFE. /&
maxperct maxNE.
correction 0;
for i 1:11

note the %ed out instructions correspond to a normal
ameters

1dn (1000000, 1) ;
rand (1000000,1);

J00000,1);

rand (1000000,1);

*randn (1000000, 1) ;

*rand (1000000,1);

randn (1000000,1);

* rand{(1000000,1);

FNE (L) L e

1);

fascgenes. *NFnext . "bgenes + fdcgenes.*NFnext.
(strain(i+l)-nextstrain);

X min{diff2);

[I2] find(diffz ®x);

strain(i+l)

nextstr )

NFvec [NE(1) :10:NF ({1

strainvect fscgenes (I2) . *NFvec. “"bgenes (I2) + fdcgenes|
nes (I2);

tsaving the coeffs for later use

) .*NFvec. “cged

COFFs{i,:) [fscgenes (I2) ,bgenes | ( )

12), fdcgenes (I2),cgenas (I12)];

NFvecmin NFEFvec.* (mean (mi

NFEvec

nperct)-correction);
axperct) tcorrection);

1ax NFEvec.* (mean (r
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correction = correction +.02;

% PLOT OF SCATTER FACTOR = 2

scatfact? = NFvec./2;

loglog (NEvec, strainvect, NFEvecmin,strainvect, 'r',NEvecmax, strainvect, 'r
', scatfact2,strainvect, k")

grid
hold on
pause (1)
end
e "4

% PLOT THE ACTUAL TEST DATA POINTS FOR REFERENCE...THESE POINTS COME FROM
% COMPANICON EXCEL WORK SHEET 'TEST DATA INPUTS'
% ENSURE THAT THE SPREAD SHEET IS IN THE SAME DIRECTORY

actZNF = xlsread|('newtestdatainputs', 'ZNFvector');
actstrain = xlsread|('newtestdatainputs', 'Strainvector');
HCF = xlsread('newtestdatainputs', '"NAVHCE');

HCF2ZNF = HCF(:,3);

HCEstrn = HCEF(:,1);

leglog (actZNF,actstrain, 'k.',HCFZNF, HCFstrn, 'r.")

title('4 Parameter Evoluticnary Algorithm Strain-Life')

xlabel ("2NF")

yvlabel ('Strain')

legend('Mean Strain', 'Min Strain', 'Max Strain', "METCUT LCF', "NAVAIR HCFE¢
', "Scatter Factor = 2")

% MONTE CARLO SIMULATION

contin = input('Do you want to run Monte Carlo Simulation? 1 == yes, 5== n«
o "1

if contin ==

SUSER INPUTS

N = input ('Enter the number of calculations at each NF level, 1-100, N = '«
)i

%P = 1lnput ('Enter the power of 10 for the max 2ZNF, P = ")

lowest = input ('Enter the power of lowest strain level desired, ie. .0001 «

would = -2.5 (recommended!), lowest = ")
highest = input ('Enter the power of the highest strain level desired, ie. «
.1 would = -1, highest = "):

fstdnum = input('Enter the number of standard deviations to plot, 1,2 or 3.+
.stdnum = "
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Simport of test data groupings and data analysis from Test Data Inputs Exced
1 worksheet

grpl = xlsread|('newtestdatainputs','.006");

grp2 = xlsread('newtestdatainputs','.007");

grp3 = xlsread|'newtestdatainputs','.012");

grpd4 = xlsread|'newtestdatainputs','.015");

grpb = xlsread({'newtestdatainputs','.02");

grp6 = xlsread|'newtestdatainputs','.03');

grp7 = xlsread('newtestdatainputs','.04"');
Rttt it "4

% TEST DATA INPUTS
3 Input the basic constants, Data is read from excel spread sheet 'new teo
st data inputs’

testNFmean = [mean(grpl(:,3)),mean(grp2(:,3)),mean({grp3(:,3)),mean(grpd(:,3¢
) ) ,mean(grp3(:,3) ), mean(grpé(:,3) ), mean(grpi(:,3))];

testNFstd = [std{grpl(:,3)),std{grp2(:,3)),std{grp3(:,3)),std{grpd (:,3}), st
d{grp5(:,3)),std{grpé(:,3)),std(grp7(:,3))1;

Zdatavar = mean(testNFstd./testNFmean); % for use with normal distributie
on model

% using the uniform distribution model

testrange = [range(grpl(:,3)),range{grp2(:,3)),range(grp3(:,3)), range (grpd (¢
:,3) ), range (grp5(:,3) ), range (grp6{:,3) ), range(grp7(:,3))]1;

datavar = (testrange./2)./testNFmean;

meandatavar = mean(datavar);

e e "4

% Alternate method of seeding the space with 2NF calculations
figure

powers = logl(O(NF);

=L

for j = 1:11

NF = logspace (powers(j),powers(j+1))";
NFEsize = length(NF);

i=1;

for 1 = 1:H;

NFmatrix{:,i) = NF;

end

dv = meandatavar;
= COFFs(j,1):
= COFFs(j,2);
= COFFs(j,3);
= COFFs (], 4);
$for use with average variation model
strainrnd = {(unifrnd{ (A- (mdv/2)*RA), (A+ (mdv/2)*Rh) ,NFsize,N)) .* (NFmatrix)«

oOm e
I
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Cunifrnd (((B- (mdv/2) *B), (B+ (mdv/2) *B) ,NFsize,N) ...
+ {(unifrnd{ (C-{mdv/2)*C), (C+{mdv/2)*C),NFsize,N)).* (NFmatrix) . unifrnd(«
(D= (mdv/2)*D), (D+{mdv/2)*D) ,NFsize, N);

start = [1,51,101,151,201,251,301,351,401,451,5017;
START start (j);

stop = [50,100,150,200,250,300,350,400,450,500,5507];
STOP = stop(7)

strainrand (STRRT:STOP, :) = strainrnd;

NFmatrixtot (START:STOP, :) = NFmatrix;

tNow all those random data points need sorting
% first make a vector of the data intervals in logspace
v = logspace (lowest, highest, 51);
count = 0;
empty = 0;
for 1vl = 1:50;
[I,J] = find(strainrand>y(lvl} & strainrand<=y(lvl+1l));
tempstrn= strainrand(I,J);
sortedstrain = tempstrn(:); %sorted strain level ine
column
branch = isempty(sortedstrain);
if branch == 1
empty = empty+l;

elseif branch == 0;
count = count + 1;
%1if sortedstrain ~= []; %not equal to
tempNF = NFmatrixtot (I,J);
sortedNF = tempNE(:); $corresponding NFs in o«
olumn
sortmeanNF (count, 1) = mean (sortedlF);
sortmaxNF{count,l) = max(sortedNF)};

sortminNF{count,1l) = min{sortedNF);
sortmeanstrain{count,l) = mean(sortedstrain);

end

% PLOTTING THE SIMULATED STRAIN LIFE DATA
loglog (sortmeanNF, sortmeanstrain, 'b', sortmaxNF, sortmeanstrain, 'b', sortminiNEe
,sortmeanstrain, 'b');
hold on
grid
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.

PLOT THE TEST DATA
MPANION EXCEL WORK
URE THAT THE

ACTUAL

FOR REFEREN

...THESE POINTS COME FROM
DATA INFUTS'

IS5 IN THE

SPREAD SHEET SAME DIRECTORY

xlsread('newtestdatainputs"',’
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loglog (NF, str 1, 'r")
grid
hold on

PLOT THE ACTUAL TEST DATA POINTS FOR REFERENCE...THESE POINTS COME

FROM CCMPANICN EXCEL WORK SHEET 'TEST DATA INPUTS'
% ENSURE THAT THE SPREAD SHEET IS IN THE SAME DIRECTORY

2NF xlsread("'newtestdatainputs"', '21‘ Fvector');
strain xlsread( 'newt tdatainputs', 'Strainvector');
testdatainputs', "NAVHCE") ;

es

loglog(act2NF, actstrain, "k. ', HCF2ZNF, HCFstrn, "r.

O
H
o
o
i
a

es curve fit

NoOrmerror 5;

count 1;

i 0;

while nor ror >= .001

=0

o

]
unifrnd/( :j—2 5
unifrnd({ (-2.5

ITJ
ITJ

o

o

ifrnd( (-2.
l;:_i;':nd [' (-2.
option optimset ('LineSearchtype', "quadcubic');

F lsgcurvefit l\,__;“.[::'lZ =0, m.._2N~ ,actstrain, lb,ub, [options] ,,ex1{i,1)#
(1,

1 .00

o
e e e O
=]
=
-

o

P (.

lJ,ex*;"’_,L,‘.,ex~i’_ 1)) ;

’

+ F(2).*NF.%ex2({1,1) +F(3).*NF."ex3(i,1) ¢

error(6) 1000*error(6); tthe error is weighted with trial ine
error to get best solution
900*error(9);
200*error (10);
400*error (11);
1000*error (12);

o

error (9)
error (10

\

\

error(11)
\

11
2

error(l
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normerror = normierror) ;
normerrcrs (i, :) = normerror;
count = count+l
if count == 1000
normerror = .000000000000001;
end
end
[E,I] = sort(normerrors);

strnfitbest = Coef(I(1),1).*NF."ex1(I(1),1) + Coef(I(1l)

,2) . *NF."ex2 (I(1), 1«
) +Coef(I(l),3).*NF.%ex3(I(1),1) + Coef(I(l),4).*NF."exd (I

1y, 1)

loglog (NF,strnfitbest, "k')

% now the Monte Carlo simulation
A= Coef(I{(1),1);

B = ex]l(I(1),1);

C = Coef(I(l),2);
D= ex2(I(1),1);
E = Coef(I(1l),3);

F =ex3(I(1),1);

G = Coef(I(1l),4);
H=exd(I(1),1);

Fcontin = input('Do you want Monte Carlo simulation? 1 == yes 5 ==
o')
contin =1;
if contin ==
o
FUSER INPUTS
N = input {('Enter the number of calculations at each NF lewvel, 1-100, N = '«
17
5P = input ('Enter the power of 10 for the max 2NF, P = 3:

lowest = input ('Enter the power of lowest strain level desired, ie. .0001 o

would = -2.5 (recommended!), lowest = "

highest = input ('Enter the power of the highest strain level desired, ie. #
.1 would = -1, highest = ")

$stdnum = input ('Enter the number of standard deviations to plot, 1,2 or 3.¢
.stdnum

')

5 import of test data groupings and data analysis from Test Data Inputs Exce
el worksheet

grpl = xlsread{'newtestdatainputs’','.006");

grp2 xlsread('newtestdatainputs','.007"};
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grp3 = xlsread('newtestdatainputs','.012'});

grpd = xlsread('newtestdatainputs','.015'};

grp5 = xlsread('newtestdatainputs','.02');

grp6 = xlsread('newtestdatainputs','.03"');

grp7 = xlsread('newtestdatainputs','.04"');

% TEST DATA INPUTS

testNFmean = [mean(grpl(:,3)),mean(grp2(:,3)),mean(grp3(:,3)),mean(grpd(:,3¢
) ) ,mean(grp5(:,3) ) ,mean(grpé(:,3) ) ,mean{grpi(:,3))]1;
[std{grpl(:,3)),std(grp2(:,3)),std{grp3(:,3)),std{grpd (:,3)),st¢

testNFstd =

dl{grp5(:,3)),std{grp6(:,3)),std(grp7(:,3))];

tdatavar = mean(testNFstd./testNFmean); % for use with normal distributio
on model

% using the uniform distribution model

testrange = [range(grpl(:,3)),range(grp2(:,3)),range(grp3(:,3)),range(grpd (¢
:,3)),range{grpb(:,3)),range (grpoi{:, 3) ), range(grp7(:,3))1];

datavar = (testrange./2)./testNFmean;

meandatavar = mean(datavar);

% Alternate method of seeding the space with ZNF calculations
nf = logspace(l,2};
NE = [nf';nf"*10;nf"*100;nf"*1000; nf"'*10000;nf"'*100000] ;
NEFsize = length (NF);
for i = 1:N;
NFmatrix(:,1i) = NF;
end
mcdv = meandatawvar;
tfor use with average variation model
strainrand = (unifrnd((A-{(mdv/2)*R), (A+ (mndv/2)*A),NFsize,N)).* (NFmatrix) . "B«
+ {(unifrnd{(C-(mdv/2)*C), (C+(mdv/2)*C),NFsize,N)).* (NFmatrix).” D +
(unifrnd{ (E-(mdv/2)*E), (E+ (mdv/2) *E),NFsize,N)).* (NFmatrix) ."F + (¢«

unifrnd( (G- {mdv/2)*G), (G+(mdv/2)*G),NFsize,N)).* (NFmatrix) . H;
figure

loglog (NFmatrix, strainrand, "yv."' )

shold on

pause(.1)

tNow all those random data points need sorting
% first make a vector of the data intervals in logspace
y = logspace (lowest,highest,51);
count = 0;
empty = 0;
for 1lvl = 1:50;
[I,J] = find(strainrand>y(lvl) & strainrand<=y(lvl+l));
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tempstrn= strainrand(I,J);

sortedstrain = tempstrn(:); $sorted strain level ine
column

branch = isempty(sortedstrain);

if branch == 1

empty = empty+l;

elseif branch == 0;
count = count + 1;
%if sortedstrain ~= []; %not equal to
tempNF = NFmatrix(I,J);
sortedNF = tempNF({:); $corresponding NFs in oo
olumn
sortmeanNF (count, 1) = mean(sortedlF) ;
sortmaxNF {count,l) = max{sortedNF)};

sortminNF{count,l}) = min{sortedNF);
sortmeanstrain{count,l) = mean(sortedstrain);

end

% PLOTTING THE SIMULATED STRAIN LIFE DATA
figure
loglog (sortmeanNF, sortmeanstrain, 'b', sortmaxNF, sortmeanstrain, 'b', sortminlNFe¢
,sortmeanstrain, 'b');
hold on

grid

title('"Variational Strainlife with Actual Test Data')
x1label ("ZNF")

yvlabel ('Strain')

% PLOT THE ACTUAL TEST DATA POINTS FOR REFERENCE...THESE POINTS COME
% FROM COMPANION EXCEL WCORK SHEET 'TEST DATA INPUTS'
% ENSURE THAT THE SPREAD SHEET IS I<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>